Math, asked by asmazed1610, 1 year ago

Two dice are rolled simultaneously and counts are added
(i) complete the table given below:
Event : 'Sum on 2 dice' 2 3 4 5 6 7 8 9 10 11 12
Probability 1/36 - - - - - 5/36 - - - 12/36

(ii) A student argues that 'there are 11 possible outcomes 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12. Therefore, each of them has a probability 1/11. Do you agree with this argument? Justify your answer.

Answers

Answered by amitnrw
85

Answer:

Probability of sum of dice in table below

Step-by-step explanation:

Two dice are rolled simultaneously => Total case = 6 * 6 = 36

Sum = 2  1+1 = 2      :only 1 case

Sum = 3   1+2 = 2 + 2       :2 Cases

Sum = 4   1+ 3 , 2 + 2  , 3 + 3   :3Cases

Sum = 5  1+4 , 2 + 3  , 3 + 2 , 4 + 1  :4 Cases

Sum = 6  1+5 ,2 + 4 , 3 + 3 , 4 + 2 , 5 + 1 : 5 Cases

Sum = 7  1+6 , 2+ 5 , 3 + 4 , 4 + 3 , 5+2 , 6 + 1   : 6 Cases

Sum = 8  2+6 , 3+ 5 , 4 + 4 , 5 + 3 , 6+2   : 5 Cases

Sum = 9  3+6 , 4+ 5 , 5 + 4 , 6 + 3    : 4 Cases

Sum = 10   4 + 6 , 5 + 5 , 6 + 4   : 3 cases

Sum = 11  5 + 6 , 6 + 5  : 2 Cases

Sum = 12  6 + 6    : 1 Case

Sum on Dice Probability

2                              1/36

3                        2/36 = 1/18

4                        3/36 = 1/12

5                        4/36 = 1/9

6                        5/36

7                        6/36 = 1/6

8                        5/36

9                        4/36 = 1/9

10                        3/36 = 1/12

11                        2/36 = 1/18

12                         1/36

I do not agree with the argument that there are 11 possible outcomes 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12. Therefore, each of them has a probability 1/11.

As probable number of outcomes are not equal

for Sum = 2  there is only 1 possible 1 & 1

while for Sum = 7  Max possibles 6   , 1+6 , 2+ 5 , 3 + 4 , 4 + 3 , 5+2 , 6 + 1

so Different probability

Answered by dineshbanuka156
1

I think this helps for you

ok

Attachments:
Similar questions