Math, asked by karanklair, 11 months ago

Two dice are thrown at the same time. Find the probability of getting (a) same no. on the both side (b) different

no. on both dices​

Answers

Answered by Anonymous
33

Two dice are thrown at the same time.

The possible outcomes are:

(1, 2) (2, 1) (3, 1) (4, 1) (5, 1) (6 ,1)

(1, 3) (2, 3) (3, 2) (4, 2) (5, 2) (6, 2)

(1, 4) (2, 4) (3, 4) (4, 3) (5, 3) (6, 3)

(1, 5) (2, 5) (3, 5) (4, 5) (5, 4) (6, 4)

(1, 6) (2, 6) (3, 6) (4, 6) (5, 6) (6, 5)

Now,

Probability = (Number of favourable outcomes)/(Total number of outcomes)

a) Same number on the both dices.

Here,

Total number of outcomes = 36

Number of favourable outcomes = 6 [(1,1) (2,2) (3,3) (4,4) (5,5) (6,6)]

So,

P(same number on both dices) = 6/36 = 1/6

b) Different number on both sides.

Here,

Total number of outcomes = 36

Number of favourable outcomes = 36 - 6 = 30 (As 6 are same)

P(different numbers on both dices) = 30/36 = 5/6

Answered by Saby123
16

</p><p>\huge{\tt{\pink{Hello!!! }}}

Sample Space\:  = &gt; \:  \begin{cases}  1,1 \: 1,2 \: 1,3 \: 1,4 \: 1,5 \: 1,6 \\2,1 \: 2,2 \: 2,3 \: 2,4 \: 2,5 \: 2,6 \\ 3,1 \: 3,2 \: 3,3 \: 3,4 \: 3,5 \: 3,6 \\ 4,1  \: 4,2 \: 4,3 \: 4,4 \: 4,5 \: 4,6\\ 5,1  \: 5, 2\: 5,3 \: 5,4 \: 5,5 \: 5,6\\ 6,1   \: 6,2 \: 6,3  \: 6,4 \: 6,5 \: 6,6\end{cases}

c1 \:  =&gt;  \begin{cases} 11  \\ 22 \\ 33 \\ 44 \\ 55 \\  66\end{cases}

</p><p>\tt{\red{\underline{\boxed {Probability \: 1 \: Of \: Getting \: Same \: No \:On \: Both \: Side \: =  \frac{1}{6} }}}}

</p><p>\tt{\purple {Probability \: 2 \:=  1 - Probability 1 = \frac{5}{6} }}

Similar questions