Two dices are thrown. Find the probability that the sum of the digits coming up is divisible by 3 or 4, while the first dice is odd.
Answers
Answer:
Possible sums which are divisible by 3 are 3, 6, 9, 12.
Possible sums which are divisible by 4 are 4, 8, 12.
Let X be the sum of two dice output divisible by 3 or 4
Let D1 be the output of first dice.
Let D2 be the output of second dice.
So, P(X=3)=P(D1=1,D2=2)+P(D1=2,D2=1)
=136+136
=236
P(X=4)=P(D1=1,D2=3)+P(D1=2,D2=2)+P(D1=3,D2=1)
=336
P(X=6)=P(D1=1,D2=5)+P(D1=2,D2=4)+P(D1=3,D2=3)+P(D1=4,D2=2)+P(D1=5,D2=1)
=536
P(X=8)=P(D1=2,D2=6)+P(D1=3,D2=5)+P(D1=4,D2=4)+P(D1=5,D2=3)+P(D1=6,D2=2)
=536
P(X=9)=P(D1=3,D2=6)+P(D1=4,D2=5)+P(D1=5,D2=4)+P(D1=6,D2=3)
=436
P(X=12)=P(D1=6,D2=6)
=136
P ( the sum of two dice output divisible by 3 or 4 ) =P(X=3)+P(X=4)+P(X=6)+P(X=8)+P(X=9)+P(X=12)
=236+336+536+536+436+136
=2036