Math, asked by MrityunjaySingh, 1 year ago

two digit number is such that the product of its digit is 18 when 63 is subtracted from the number the digits interchange their place find the number


MrityunjaySingh: plz ....help

Answers

Answered by nanthustark
1
mokka piece a iruka ithu koodava theriyaatha
Answered by Anonymous
1

{\green {\boxed {\mathtt {☆Solution}}}}

  \rm \: let \: the \: tens \: and \: unit \: digit \: of \: the \: required \: number \: be \: x \: and \: y \: respectively \: then \\  \rm \: xy = 18 \implies \: y =  \frac{18}{x}   \\   \rm \: \purple {\: and \: (10x + y) - 63 = 10y + x }\\   \rm\implies \: 9x - 9y = 63 \implies \: x - y = 7 \:  \:  \:  \: .....(1) \\  \rm \orange{ \: putting \: y =  \frac{18}{x }  \: into \: (1) }\\  \rm \: x -  \frac{18}{x}  = 7 \\  \rm \: x {}^{2}   - 18 - 7x \implies \: x {}^{2}  - 7x - 18 \\  \rm  \implies \: x {}^{2}  - 9x + 2x - 18 = 0 \implies \: x(x - 9) + 2(x - 9) = 0 \\  \rm \implies(x - 9)(x + 2) = 0 \\  \rm \: x = 9 \: or \: x =  - 2 \:  \:  \:  \: ( but \: a \: digit \: cannot \: be \: negative) \\ \rm   \red {\:  \boxed{\therefore \: x = 9}} \\  \rm \: putting \: x = 9 \: in \: (1) we \: get \: y = 2 \\  \rm \: thus \: the \: tens \: digit \: is \: 9 \: and \: the \: unit \: digit \: is \: 2  \\  \rm hence \: the \: required \:  number \: is \: 92

Similar questions