two digits number contains the smaller of two digits in the units place . the product pf the digits is 24 and difference is 5. find the number ?
Answers
Answer:83
Step-by-step explanation:
Let,
The 2 digit nos. Be x and y
ATQ,
X>Y
So,
X*Y=24...eq1
X-Y=5...eq2
And,
X=5+Y...eq3
Eq 3 in eq 1
We get,
(5+y)y=24
5y+y*y=24
P(x)=y*y+5y-24=0
Factorising p(x),
y*y+ 8y- 3y -24
y(y+8)-3(y+8)
y-3 and y+8
So,
y = 3 or -8
Here,
We neglect negative sign value.
So,
y=3...in eq 1
We get,
x *3=24
x=24/3=8
x=8
Statement:The number is 84
Assume
Unit digit place be p
Ten's digit place be t
Original number = 10t + p
Now,.
Situation,
pt = 24 ......... (1)
t - p = 5
t = 5 + p ........... (2)
pt = 24
p (5 + p) = 24
5p + p² = 24
p² + 5p - 24 = 0
p² + 8p - 3p - 24 = 0
p(p + 8) - 3(p + 8) = 0
(p - 3 ) (p + 8) = 0
(p - 3) = 0
p = 3
Also,
(p + 8) = 0
p = -8
p = -8 Not applicable
So,
p = 3
t = p + 5
t = 3 + 5
t = 8
= 10t + p
= 10 × 8 + 3
= 80 + 3
= 83
Hence,