Physics, asked by singharadhya0959, 6 months ago

Two forces of magnitude 8 N and 15 N respectively
act at a point. If the resultant force is 17 N, the
angle between the forces has to be
(1) 60°
(2) 45°
(3) 90°
(4) 30°

Answers

Answered by ppurushotham429
0

Answer:

can you write in hindi language

Answered by snehitha2
10

Answer :

option (3) 90°

Explanation :

  Let θ be the angle between the two forces.

Given,

  • Two forces of magnitude 8 N and 15 N respectively  act at a point.
  • The resultant force is 17 N

To find,

  • The  angle between the forces, θ = ?

      Let \ P=8 \ N \ and \ Q = 15 \ N \\ and \ R=17 \ N

The \ resultant \ of \ the \ two \ vectors \ \vec{P} \ and \ \vec{Q} \ is \ given \ by

                  \boxed{\bf R=\sqrt{P^2+Q^2+2PQcos\theta}}

           

        \longrightarrow \ \ \ \ 17=\sqrt{8^2+15^2+2(8)(15)cos\theta} \\\\ \longrightarrow \ \ \ \ 17^2=8^2+15^2+(16)(15)cos\theta \\\\ \longrightarrow \ \ \ \ 289=64+225+240cos\theta \\\\ \longrightarrow \ \ \ \ 289=289+240cos\theta \\\\ \longrightarrow \ \ \ \ 289-289=240cos\theta \\\\ \longrightarrow \ \ \ \ 0=240cos\theta \\\\ \longrightarrow \ \ \ \ cos\theta=0 \\\\ \longrightarrow \ \ \ \ cos\theta=cos90^0 \\\\ \longrightarrow \ \ \ \ \boxed{\theta=90^0}

∴ The angle between the forces is 90°

 ______________________________

  MORE INFORMATION :

  • Resultant is the vector sum of two or more vectors.
  • Direction of resultant,

            Let α be the angle made by the resultant R with P

     From ΔOCD, (refer the attachment)

                    tan α = CD/OD

                    tan α = CD/(OA+AD)

                    tan\alpha =\frac{Q \ sin\theta}{P+Q \ cos \theta} \\\\ \bf \alpha =tan^{-1}(\frac{Q \ sin\theta}{P+Q \ cos \theta})        

               

Attachments:
Similar questions
Math, 11 months ago