Physics, asked by dtha94713, 2 months ago

Two forces p and Q acting at a point maximum resultant is 300 N and minimum magnitude is 800 N find the value of p and Q​

Answers

Answered by patibandlasubbi2007
0

Explanation:

Two force P and Q .

Maximum resultant = 300.

Minimum resultant = 800 N.

TO FIND :-

The value of P and Q.

SOLUTION :-

The maximum resultant force can be written as,

\begin{gathered} \implies \sf \: P + Q = 300....(1) \\ \end{gathered}

⟹P+Q=300....(1)

The minimum resultant force can be written as,

\begin{gathered}\implies \sf \: P - Q = 800....(2) \\ \end{gathered}

⟹P−Q=800....(2)

From equation 1 we have,

\begin{gathered}\implies \sf \: P = 300 - Q ....(3) \\ \end{gathered}

⟹P=300−Q....(3)

From equation 2 we have,

\begin{gathered}\implies \sf \: P = 800 + Q ....(4) \\ \end{gathered}

⟹P=800+Q....(4)

On comparing equation 3 and 4 we get,

\begin{gathered}\implies \sf \: 300 - Q = 800 + Q \\ \end{gathered}

⟹300−Q=800+Q

\begin{gathered}\implies \sf \: - 2Q = 500 \\ \end{gathered}

⟹−2Q=500

\begin{gathered}\implies \sf \: - Q = \dfrac{500}{2} \\ \end{gathered}

⟹−Q=

2

500

\begin{gathered}\implies \sf \: Q = - 250 \\ \end{gathered}

⟹Q=−250

Now substitute the value of Q in equation 1,

\begin{gathered}\implies \sf \: P - 250 = 300 \\ \end{gathered}

⟹P−250=300

\begin{gathered}\implies \sf \: P= 300 + 250 \\ \end{gathered}

⟹P=300+250

\implies \sf \: P=550⟹P=550

Hence the value of P is 550 and value of Q is -250.

Thank you ☺️

Answered by Harsh8557
2

Answer:

  • \textsf{Value of P is 550}
  • \textsf{Value of Q is -250}

Explanation:

\star\:{\underline{\underline{\tt{\red{GIVEN}}}}}:-

  • \sf{Two \:force\: P\: and\: Q }
  • \sf{Resultant_{\:(Max)} = 300N}
  • \sf{Resultant_{\:(Min)} = 800 N}

\star\:{\underline{\underline{\tt{\orange{TO\: FIND }}}}}:-

  • \sf{The \:value \:of\: P \:and \:Q}

\star\:{\underline{\underline{\tt{\green{SOLUTION}}}}}:-

  • \textsf{P + Q = 300 N . . . . ( 1 )}
  • \textsf{P = 300 - Q . . . . ( 2 )}
  • \textsf{P - Q = 800 N . . . . ( 3 )}
  • \textsf{P = 800 + Q . . . . ( 4 )}

\dag\:\underline{\mathfrak{\purple{By\: comparing \: equation\:(2) \:and\:(3)}}}:-

\qquad\quad\rightarrow\:\:\:\:\sf\orange{ 300 - Q = 800  + Q}   \\

\qquad\quad\rightarrow\:\:\:\:\sf\blue{ - 2Q =    500} \\

\qquad\quad\rightarrow\:\:\:\:\sf\orange{  -  Q =   \dfrac{500}{2} } \\

\qquad\quad\rightarrow\:\:\:\:\sf\blue{  Q =   - 250} \\

\dag\:\underline{\mathfrak{\purple{Substituting \:the \:value \:of\: Q \:in\: equation\: (1)}}}:-

\qquad\quad\rightarrow\:\:\:\:\sf\orange{ P  -  250 = 300 }\\

\qquad\quad\rightarrow\:\:\:\:\sf\blue{  P= 300  +  250 }\\

\qquad\quad\rightarrow\:\:\:\:\sf\orange{  P=550}

\dag\:\underline{\mathfrak{\purple{Hence,}}}:-

  • \sf\red{Value \ of \ P \ is \ 550}
  • \sf\green{Value \ of \ Q \ is \ -250}
Similar questions