Physics, asked by Vics, 10 months ago

Two identical chargedloop of radius r having charge q and minus q are placed coaxially at 2r distance apart find the electric field intensity at the centre of each, at the middle point of the line joining the center of the loops, at distance r along the axis but outside position

Answers

Answered by Anonymous
10

Explanation:

Let the charge on A and B be = Q each.

Let the distance of separation between them be = 2R

According to Coloumb’s law of electrostats,

Force between them F1 = KQ2/(2R)2

F1 = KQ2/4R2 this force is given in the problem as 2*10-5N.

When an uncharged sphere C is brought in contact with A first, the charges get equally shared between them , hence each sphere acquires a charge Q/2.

Now force between A &C after it is placed at mid point ie at distance R from A is:

F2 = K(Q/2 )*( Q/2)/R2

F2 = KQ2/4R2

Force between C and B will be :

F3 = (K(Q/2) * Q)/(R)2

F3 = KQ2/2R2

Clearly, F3>F2 therefore F3-F2:-

Hence KQ2/R2( 1/2 - 1/4 )

= KQ2/R2( ¼ )

= KQ2/4R2

But this is the given force F1 from eqn 1 hence the net force on C = 2*10-5N

&lt;svg id="wrap" width="300" height="300"&gt;</p><p></p><p>&lt;!-- background --&gt;</p><p>&lt;svg&gt;</p><p>&lt;circle cx="150" cy="150" r="130" style="stroke: lightblue; stroke-width:18; fill:transparent"/&gt;</p><p>&lt;circle cx="150" cy="150" r="115" style="fill:#2c3e50"/&gt;</p><p>&lt;path style="stroke: #2c3e50; stroke-dasharray:820; stroke-dashoffset:820; stroke-width:18; fill:transparent" d="M150,150 m0,-130 a 130,130 0 0,1 0,260 a 130,130 0 0,1 0,-260"&gt;</p><p>&lt;animate attributeName="stroke-dashoffset" dur="6s" to="-820" repeatCount="indefinite"/&gt;</p><p>&lt;/path&gt;</p><p>&lt;/svg&gt;</p><p></p><p>&lt;!-- image --&gt;</p><p>&lt;svg&gt;</p><p>&lt;path id="hourglass" d="M150,150 C60,85 240,85 150,150 C60,215 240,215 150,150 Z" style="stroke: white; stroke-width:5; fill:white;" /&gt;</p><p></p><p>&lt;path id="frame" d="M100,97 L200, 97 M100,203 L200,203 M110,97 L110,142 M110,158 L110,200 M190,97 L190,142 M190,158 L190,200 M110,150 L110,150 M190,150 L190,150" style="stroke:lightblue; stroke-width:6; stroke-linecap:round" /&gt;</p><p></p><p>&lt;animateTransform xlink:href="#frame" attributeName="transform" type="rotate" begin="0s" dur="3s" values="0 150 150; 0 150 150; 180 150 150" keyTimes="0; 0.8; 1" repeatCount="indefinite" /&gt;</p><p>&lt;animateTransform xlink:href="#hourglass" attributeName="transform" type="rotate" begin="0s" dur="3s" values="0 150 150; 0 150 150; 180 150 150" keyTimes="0; 0.8; 1" repeatCount="indefinite" /&gt;</p><p>&lt;/svg&gt;</p><p></p><p>&lt;!-- sand --&gt;</p><p>&lt;svg&gt;</p><p>&lt;!-- upper part --&gt;</p><p>&lt;polygon id="upper" points="120,125 180,125 150,147" style="fill:#2c3e50;"&gt;</p><p>&lt;animate attributeName="points" dur="3s" keyTimes="0; 0.8; 1" values="120,125 180,125 150,147; 150,150 150,150 150,150; 150,150 150,150 150,150" repeatCount="indefinite"/&gt;</p><p>&lt;/polygon&gt;</p><p></p><p>&lt;!-- falling sand --&gt;</p><p>&lt;path id="line" stroke-linecap="round" stroke-dasharray="1,4" stroke-dashoffset="200.00" stroke="#2c3e50" stroke-width="2" d="M150,150 L150,198"&gt;</p><p>&lt;!-- running sand --&gt;</p><p>&lt;animate attributeName="stroke-dashoffset" dur="3s" to="1.00" repeatCount="indefinite"/&gt;</p><p>&lt;!-- emptied upper --&gt;</p><p>&lt;animate attributeName="d" dur="3s" to="M150,195 L150,195" values="M150,150 L150,198; M150,150 L150,198; M150,198 L150,198; M150,195 L150,195" keyTimes="0; 0.65; 0.9; 1" repeatCount="indefinite"/&gt;</p><p>&lt;!-- last drop --&gt;</p><p>&lt;animate attributeName="stroke" dur="3s" keyTimes="0; 0.65; 0.8; 1" values="#2c3e50;#2c3e50;transparent;transparent" to="transparent" repeatCount="indefinite"/&gt;</p><p>&lt;/path&gt;</p><p></p><p>&lt;!-- lower part --&gt;</p><p>&lt;g id="lower"&gt;</p><p>&lt;path d="M150,180 L180,190 A28,10 0 1,1 120,190 L150,180 Z" style="stroke: transparent; stroke-width:5; fill:#2c3e50;"&gt;</p><p>&lt;animateTransform attributeName="transform" type="translate" keyTimes="0; 0.65; 1" values="0 15; 0 0; 0 0" dur="3s" repeatCount="indefinite" /&gt;</p><p>&lt;/path&gt;</p><p>&lt;animateTransform xlink:href="#lower" attributeName="transform"</p><p>type="rotate"</p><p>begin="0s" dur="3s"</p><p>values="0 150 150; 0 150 150; 180 150 150"</p><p>keyTimes="0; 0.8; 1"</p><p>repeatCount="indefinite"/&gt;</p><p>&lt;/g&gt;</p><p></p><p>&lt;!-- lower overlay - hourglass --&gt;</p><p>&lt;path d="M150,150 C60,85 240,85 150,150 C60,215 240,215 150,150 Z" style="stroke: white; stroke-width:5; fill:transparent;"&gt;</p><p>&lt;animateTransform attributeName="transform"</p><p>type="rotate"</p><p>begin="0s" dur="3s"</p><p>values="0 150 150; 0 150 150; 180 150 150"</p><p>keyTimes="0; 0.8; 1"</p><p>repeatCount="indefinite"/&gt;</p><p>&lt;/path&gt;</p><p></p><p>&lt;!-- lower overlay - frame --&gt;</p><p>&lt;path id="frame" d="M100,97 L200, 97 M100,203 L200,203" style="stroke:lightblue; stroke-width:6; stroke-linecap:round"&gt;</p><p>&lt;animateTransform attributeName="transform"</p><p>type="rotate"</p><p>begin="0s" dur="3s"</p><p>values="0 150 150; 0 150 150; 180 150 150"</p><p>keyTimes="0; 0.8; 1"</p><p>repeatCount="indefinite"/&gt;</p><p>&lt;/path&gt;</p><p>&lt;/svg&gt;</p><p></p><p>&lt;/svg&gt;

Answered by Anonymous
15

❇️❇️❇️❇️❇️❇️❇️❇️❇️❇️❇️❇️❇️❇️❇️

✒️Your Question :-

➡️ Two identical chargedloop of radius r having charge q and minus q are placed coaxially at 2r distance apart find the electric field intensity at the centre of each, at the middle point of the line joining the center of the loops, at distance r along the axis but outside position

____________________________

✒️Answer :-

According to Coloumb’s law of electrostats,

Force between them F1 = KQ2/(2R)2

F1 = KQ2/4R2 this force is given in the problem as 2*10-5N.

When an uncharged sphere C is brought in contact with A first, the charges get equally shared between them , hence each sphere acquires a charge Q/2.

Now force between A &C after it is placed at mid point ie at distance R from A is:

F2 = K(Q/2 )*( Q/2)/R2

F2 = KQ2/4R2

Force between C and B will be :

F3 = (K(Q/2) * Q)/(R)2

F3 = KQ2/2R2

Clearly, F3>F2 therefore F3-F2:-

Hence KQ2/R2( 1/2 - 1/4 )

= KQ2/R2( ¼ )

= KQ2/4R2

But this is the given force F1 from eqn 1 hence the net force on C = 2*10-5N

___________________________

➡️ hope this helps you ❗️❗️

✔️✔️

❇️❇️❇️❇️❇️❇️❇️❇️❇️❇️❇️❇️❇️❇️❇️

Similar questions