Physics, asked by rucha42, 11 months ago

two isolated plates of a capacitor has been given a charge of 6microcoulomb, the area of plates is 2 sq metre.Find approximate force of attraction between two plate​

Answers

Answered by Sharad001
326

\large\sf\underline{ \red{\underline{Question }}}:- \:  \\  \sf Two  \: isolated \: plates \: of \: a \: capacitor \: has \: been \: given \:  \\ \sf a \: charge \: of \: 6 \mu \: c \: the \: area \: of \: plates \: is \: 2sq. \: metre \\ \sf find \: approximate \: force \: of \: attraction \: between \\ \sf two \:p lates.

\large\sf\underline{ \orange{\underline{ Answer }}}:- \:  \:  \\ \\  \: \to \red{ \boxed{ \sf \green{F = 1.048 \: Newton \: }}} \:  \\  \\ \large\sf\underline{ \green{\underline{ To Find  \:  }}}:- \: \:  \\  \to \sf \: approximate \: force \: between \: plates

  \large\sf\underline{ \red{\underline{  Explanation\:  }}}:-

Given that :

  • Area between plates (A) = 2 sq. metre

  • Charge on plates  \sf(Q) = 6 \mu C

\large\sf\underline{ \pink{\underline{  Solution \:   }}}:- \:

We know that ,

 \to \sf \red{E = } \green{\dfrac{Q}{2 A \epsilon_0 }  \: } \\   \:  \\  \because \sf \:  F = EQ  \\  \:  \therefore \\  \\  \to \sf F = Q  \times \dfrac{Q}{2 A \epsilon_0 }  \\  \\  \to \sf F =   \dfrac{ {Q}^{2} }{2 A \epsilon_0  } \:  \\  \\   \red{\boxed{ \because \sf \green{ \epsilon_0 = 8.85} \times  {10}^{ - 12} }} \\  \boxed{ \because \sf1 \mu \: C =  {10}^{ - 6} \:  C  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\  \bf puting \: the \: given \: values \\

 \to \sf F \:  =  { \frac{ \orange{6 \times  {10}^{ - 6} \times 6 \times  {10}^{ - 6} } }{ \red{2 \times 2 \times 8.85 \times  {10}^{ - 12} }}}  \\  \\  \to \sf F =  \frac{36 \times  {10}^{ - 12} }{ \blue{4 \times 8.85 \times  {10}^{ - 12} }}  \\  \\  \to \sf \:  F =  \frac{36 \times 100}{4 \times 858}  \\  \\  \to \sf F = \pink{  \frac{3600}{3432}  }\\  \\  \to \red{ \boxed{ \sf \green{F = 1.048 \: Newton \: }}}

Required force between them is 1.048 N

Answered by Anonymous
105

Answer:

\large\boxed{\sf{1.01\;N}}

Explanation:

It's being given that there is a parallel plate capacitor.

Charge on capacitor = 6 μC = 6\times {10}^{-6}\:C

Area of the plates = 2\:{m}^{2}

To find the force between the plates:

We know that, for a parallel plate capacitor,

\large \boxed{ \red{E =  \dfrac{q}{2A \epsilon_{o}} }}

where, the respective meanings of,

  • E = electric field
  • q = charge on capacitor
  • A = area between the plates
  • \epsilon_{o}=8.85\times{10}^{-12}\;N{m}^{2}{C}^{-2}

Also, we know that,

\large\boxed{\red{F=qE}}

where F is the force required.

Therefore, we have,

=  > F =  \frac{ {q}^{2} }{2A \epsilon_{o} }  \\  \\  =  > F =  \frac{ {(6  \times  {10}^{ - 6} )}^{2} }{2 \times 2 \times 8.85 \times  {10}^{ - 12} }  \\  \\  =  > F=  \frac{36 \times  {10}^{ - 12} }{4 \times 8.85 \times  {10}^{  - 12} }  \\  \\  =  > F =  \frac{36}{4 \times 8.85}  \\  \\  =  > F =  \frac{9}{8.85}  \\  \\  =  > F = 1.01 \: N

Hence, force of attraction is 1.01 N

Similar questions