Math, asked by abhayunboxer, 9 months ago

two lenses one converging of focal length 30 cm make a combination of other lens and this combination behave Like a diverging lens of focal length 10 cm. find focal length of unknown lens and its nature also​

Answers

Answered by Anonymous
13

GiveN :

  • Focal length of first converging lens \sf{F_1\ =\ 30\ cm}
  • Focal length of combination of lenses \sf{F_{eq}\ =\ - 10\ cm}

To FinD :

  • Focal length of Unknown lens

SolutioN :

As we know that for my last for focal length of lenses, if they are in combination is given by :

ㅤㅤㅤㅤㅤㅤㅤ

\implies \boxed{\sf{\dfrac{1}{F_{eq}} = \dfrac{1}{F_1} + \dfrac{1}{F_2}}}

ㅤㅤㅤㅤㅤㅤㅤ

Putting Values,

\implies \rm{\dfrac{1}{-10} = \dfrac{1}{30} + \dfrac{1}{F_2}}

ㅤㅤㅤㅤㅤㅤㅤ

\implies \rm{\dfrac{-1}{10} - \dfrac{1}{30} = \dfrac{1}{F_2}}

ㅤㅤㅤㅤㅤㅤㅤ

\implies \rm{\dfrac{1}{F_2} = \dfrac{-3 - (+1)}{30}}

ㅤㅤㅤㅤㅤㅤㅤ

\implies \rm{\dfrac{1}{F_2} = \dfrac{-3 - 1}{30}}

ㅤㅤㅤㅤㅤㅤㅤ

\implies \rm{\dfrac{1}{F_2} = \dfrac{-4}{30}}

ㅤㅤㅤㅤㅤㅤㅤ

\implies \rm{F_2 = \dfrac{-30}{4}}

ㅤㅤㅤㅤㅤㅤㅤ

\implies \rm{F_2\ =\ -7.5\ cm }

ㅤㅤㅤㅤㅤㅤㅤ

_________________________

  • Nature of Lens is diverging (concave lens)
  • Focal length is - 7.5 cm
Answered by SarcasticL0ve
15

GivEn:-

  • Focal length of 1st converging lens \sf ( f_1 ) = 30cm

  • Focal length of combination lenses = \sf ( f_{eq} )

To find:-

  • Focal length of unknown lens and its nature also.

SoluTion:-

As we know that,

If we have combination of lenses then,

Sum of two lenses is equals to combination of these lenses.

Therefore,

\dag\;{\underline{\boxed{\bf{\pink{ \dfrac{1}{ f_{eq} } = \dfrac{1}{ f_1 } + \dfrac{1}{ f_2 }}}}}}

★ Now, Put value in above formula,

:\implies\sf \dfrac{1}{-10} = \dfrac{1}{30} + \dfrac{1}{ f_2 }

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf - \dfrac{1}{10} - \dfrac{1}{30} = \dfrac{1}{ f_2 }

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf  \dfrac{ - 3 - ( + 1)}{30}= \dfrac{1}{ f_2 }

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf  \dfrac{ - 3 - 1}{30}= \dfrac{1}{ f_2 }

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf  \dfrac{ - 4}{30}= \dfrac{1}{ f_2 }

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf  f_2 = - \dfrac{30}{4}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf{\underline{\boxed{\bf{\purple{ f_2 = -7.5\;cm}}}}}

Therefore, we can say that first lens of focal length 30cm and the other of focal length -7.5 combine to form a lens of focal length 10cm.

━━━━━━━━━━━━━━━

We gets focal length of lens is -7.5cm.

Therefore, the nature of lens is diverging ( concave lens).

━━━━━━━━━━━━━━━

Similar questions