Math, asked by passwod8348, 1 year ago

Two men standing on either side of a tower of 60m high observe the angle of elevation of the top of tower to be 45degree and 60degree respectively. Find the distance between the two men

Answers

Answered by Anonymous
10

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \boxed{\boxed { \huge  \mathcal\red{\mathcal{Solution}}}}}

Given \begin{cases}</p><p></p><p>\small{\textbf{1. height(h) of the tower=60 metre}} \\</p><p></p><p>\small{\textbf{2. Angle of elevation from one side is }}\: 45\degree\\  </p><p>\small{\textbf{3. Angle of elevation from other side is }}\: 60\degree</p><p></p><p>\end{cases}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\large{\red{\textbf{Let's Solve The Problem}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Now for the Triangle ∆ABC & ∆ABD ,

\bf\Longrightarrow\angle ABC=90\degree\\</p><p>\bf\Longrightarrow\angle ABD=90\degree

\therefore∆ABC & ∆ABD are Right angled triangle.

\underline{\red\textbf{From the Fig:-}}

\bf\Longrightarrow height of the tower=AB=60m\\</p><p>\bf\Longrightarrow\angle ACB=45\degree\\</p><p>\bf\Longrightarrow\angle ADB=60\degree\\</p><p>\bf\Longrightarrow BC=x_1 \:(let)\\</p><p>\bf\Longrightarrow BD=x_2\:(let)\\</p><p>\bf\therefore\footnotesize{ the\: distance\: between\: the \:two\: men=CD=BC+BD=(x_1+x_2) \: metres}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Now Applying Trigonometric Knowledge

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

1)To the ABC:-

\bf\Longrightarrow tan\angle ACB=\frac{AB}{BC}\\ \bf\Longrightarrow tan45\degree=\frac{60}{x_1}\\ \bf\Longrightarrow</p><p>1=\frac{60}{x_1}\\ \bf\Longrightarrow\boxed{ \bf x_1=60\:metre}

2)To the ∆ABD:-

\bf\Longrightarrow tan\angle ADB=\frac{AB}{BD}\\

\bf\Longrightarrow tan60\degree=\frac{60}{x_2}\\

 \bf\Longrightarrow</p><p>\sqrt{3}=\frac{60}{x_2}\\ \bf\Longrightarrow \bf x_2=\frac{60}{\sqrt{3}}\:\\</p><p> \bf\Longrightarrow \bf x_2=\frac{20\times\sqrt{3}\times\cancel{\sqrt{3}}}{\cancel{\sqrt{3}}}\\

 \bf\Longrightarrow\boxed{ \bf x_2=20\sqrt{3}\:metre}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\bf\therefore\normalsize{ the\: distance\: between\: the \:two\: men}\\</p><p>\bf\Longrightarrow(x_1+x_2)\\</p><p> \bf\Longrightarrow(60+20\sqrt{3})\: metres\\</p><p>\bf\Longrightarrow( 60+34.641)\:metres\\</p><p>\bf\Longrightarrow\boxed{\large{\mathfrak\red{\bf 94.641\:metres}}}\:(approx)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

\mathcal{ \&amp;#35;\mathcal{answer with quality  }\:  \:  \&amp;#38;  \:  \: \&amp;#35;BAL }

Attachments:
Similar questions