Math, asked by aquamangol, 11 months ago

Two numbers are in the ratio 2:3 and the product of hcf & lcm is 150 then find the sum of the numbers​

Answers

Answered by Anonymous
8

Answer:

Numbers = 10 & 15

Sum = 10+15 = 25

Step-by-step explanation:

Given:

  • Two numbers are in ratio 2:3
  • Product of HCF & LCM is 150

To Find:

  • What are the numbers and their sum?

Solution: Let x be the common in given ratio

Ratio will be 2x & 3x

  • First number = 2x [ ]
  • Second Number = 3x [ ]

A/q

\small\implies{\sf } x = HCF x LCM

\small\implies{\sf } 2x(3x) = 150

\small\implies{\sf } 6x² = 150

\small\implies{\sf } = 150/6

\small\implies{\sf } = 25

\small\implies{\sf } x = 25

\small\implies{\sf } x = 5

Hence, The numbers will be :

  • 2x = 2(5) = 10
  • 3x = 3(5) = 15

Now Finding the sum of these two numbers

\small\implies{\sf } +

\small\implies{\sf } 2x + 3x

\small\implies{\sf } 5x

\small\implies{\sf } 5(5)

\small\implies{\sf } 25

Hence, Sum of numbers is 25

Answered by Anonymous
13

AnswEr :

\frak{Given}\begin{cases}\sf{Ratio \: of \: no.s = 2:3}\\\sf{H.C.F \times\ L.C.M = 150}\end{cases}

 \rule{150}2

\normalsize\bullet\:\sf\ Let \: the \: first \: number \: be \: 2x

\normalsize\bullet\:\sf\ Let \: the \: second  \: number \: be \: 3x

\underline{\bigstar\:\textsf{According \: to \: the \: question \: now:}}

\normalsize\ : \implies\sf\ Product \: of \: two \: no.s = H.C.F \times\ L.C.M

\normalsize\ : \implies\quad\sf\ 2x \times\ 3x = 150

\normalsize\ : \implies\quad\sf\ 6x^2 = 150

\normalsize\ : \implies\quad\sf\ x^2 = \frac{\cancel{150}}{\cancel{6}}

\normalsize\ : \implies\quad\sf\ 2x \times\ 3x = 150

\normalsize\ : \implies\quad\sf\ x^2 = 25

\normalsize\ : \implies\quad\sf\ x = \sqrt{25}

\normalsize\ : \implies\quad{\boxed{\sf{ x = 5 }}}

\underline{\bigstar\:\textsf{Sum \: of \: both \: numbers:}}

\bf{First \: no.}\begin{cases}\sf{2x = 2 \times\ 5}\\\sf{2x = 10}\end{cases}

\bf{Second \: no.}\begin{cases}\sf{3x = 3 \times\ 5}\\\sf{3x = 15}\end{cases}

\normalsize\dashrightarrow\sf\ Sum \: of \: two \: numbers = First \: no. + Second \: no.

\normalsize\dashrightarrow\quad\sf\ Sum  = 10 + 15

\normalsize\dashrightarrow\quad\sf\ Sum  = 25

\normalsize\dashrightarrow\quad{\boxed{\sf \red{Sum  = 25}}}

\therefore\:\underline{\textsf{Hence, \: the \: sum \: of \: two \: numbers \: is}{\textbf{\: 25}}}

Similar questions