Math, asked by sukhdevpalwe, 2 months ago

Two numbers are in the ratio 2:3. If 5 is added to each number, then the new numbers are in the ratio 3:4 find the numbers​

Answers

Answered by Anonymous
173

Answer:

Given :-

  • Two numbers are in the ratio of 2 : 3.
  • 5 is added to each number, then the new numbers are in the ratio of 3 : 4.

To Find :-

  • What is the numbers.

Solution :-

Let,

\mapsto \bf{First\: number =\: 2y}

\mapsto \bf{Second\: number =\: 3y}

\pink{\bigstar}\: \: \bf{According\: to\: the\: question\: :-}\\

\leadsto 5 is added to each number, then the new numbers are in the ratio of 3 : 4.

\implies \sf \dfrac{First\: number + 5}{Second\: number + 5} =\: New\: number\\

\implies \sf \dfrac{2y + 5}{3y + 5} =\: \dfrac{3}{4}

\pink{\bigstar}\: \: \bf{By\: doing\: cross\: multiplication\: we\: get\: :-}\\

\implies \sf 3(3y + 5) =\: 4(2y + 5)

\implies \sf 9y + 15 =\: 8y + 20

\implies \sf 9y - 8y =\: 20 - 15

\implies \sf\bold{\purple{y =\: 5}}

Hence, the required numbers are :

First number :

\longrightarrow \sf First\: number =\: 2y

\longrightarrow \sf First\: number =\: 2(5)

\longrightarrow \sf\bold{\red{First\: number =\: 10}}

Second number :

\longrightarrow \sf Second\: number =\: 3y

\longrightarrow \sf Second\: number =\: 3(5)

\longrightarrow \sf\bold{\red{Second\: number =\: 15}}

{\small{\bold{\purple{\underline{\therefore\: The\: numbers\: are\: 10\: and\: 15\:. </p><p>\:}}}}}

Answered by SparklingBoy
199

▪ Given :-

  • The ratio of two numbers is 2:3

  • After adding 5 to each number three ratio of new numbers is 3:4

-------------------------------

▪ To Find :-

  • Both of the Numbers

-------------------------------

▪ Solution :-

Let,

The First Number be = 2x

According to the Given Condition ,

Second Number Must be = 3x

《After Adding 5 to each number

  • First Number = 2x + 5

  • Second Number = 3x + 5

According to the Given Condition ,

 \sf{ \dfrac{2x + 5}{3x + 5} } =  \frac{3}{4}  \\  \\  \sf :  \longmapsto \:  4(2x + 5) = 3(3x + 5) \\  \\ :  \longmapsto \:  \sf8x + 20 = 9x + 15 \\  \\ :  \longmapsto \: \sf9x - 8x = 20 - 15  \\   \\ \Large \purple{ :\longmapsto \underline {\boxed{{\bf x = 5} }}}

 \huge \underline \mathcal{Hence,}

  • First Number = 2 × 5 = 10

  • Second Number = 3 × 5 = 15

\pink{\underline \mathcal{{So,\:The \:\:Two\: \:Numbers \: \:are\: \: 10 \:\: And\:\: 15}}}

 \Large \red{\mathfrak{  \text{W}hich \:   \: is\:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer}}

-------------------------------

Similar questions