Math, asked by tanuj515, 5 months ago

Two numbers are in the ratio 5:7. If they differ by 42, find the greater number?​

Answers

Answered by aryan073
4

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Question :

➊ Two numbers are in the ratio 5:7 . If they differ by 42 , find the greatest number?

To find:

➡ Greatest number =?

Solution :

➜ Let x and y be the required two numbers where y > x.

 \\  \therefore \sf \: the \: ratio \:  \frac{x}{y}  =  \frac{5}{7}  \implies \:  \boxed { \sf{x =  \frac{5y}{7} }} \to \: (1)

• And the difference is 42

  \\ \implies \sf \: y - x = 12 \:  \: ...equation \: (2)

 \\  \implies \sf \: y -  \frac{5y}{7} = 12 \:  \to \: using \: equation(1)

 \\  \implies \sf \: 7y - 5y = 12 \times 7

 \implies \sf \: 2y = 84 \:

  \\ \implies \sf \:  \boxed{  \sf\: y = 42} \:

From equation (2) we get,

 \\  \implies \sf \: 42 - x = 12

 \\  \implies \sf \: 42 - x - 12 = 0

 \implies \sf  \boxed{\sf \: x = 30}

Hence the larger number is 42

■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□

Similar questions