Physics, asked by princeanto9bjmj, 5 months ago

two object of masses 40kg are placed at a distance of 4m calculated the gravitation form of attraction​

Answers

Answered by Anonymous
4

Answer:

Given : m

1

=80 kg m

2

=1200 kg d=10 m

Force of gravitation F=

d

2

Gm

1

m

2

Or F=

10

2

6.67×10

−11

×80×1200

=6.4×10

−8

N

Answered by Yuseong
4

Required Solution:

Given:

  • Mass of the 1st object \sf {(m_1)} = 40kg
  • Mass of the 2nd object \sf {(m_2)} = 40kg
  • Distance (r) = 4m

To calculate:

  • Force between them (F)

Calculation:

We know that,

  •  {\underline {\boxed {\Large {\sf { F = \dfrac{Gm_1m_2}{ {r}^{2} }  } }}}}

Where,

→ F = Force of attraction

→ G = Universal gravitation constant

(Value of G is  \sf { 6.67 \times {10}^{-11} } )

\sf {(m_1)} = Mass of the 1st object

\sf {(m_2)} = Mass of the 2nd object

Now, substitute the values:

\sf {⇢ \dfrac{6.67 \times {10}^{-11} \times 40 \times 40}{ {(4)}^{2} }  }

 \qquad

\sf {⇢ \dfrac{6.67 \times {10}^{-11} \times \cancel{40} \times \cancel{40}}{ \cancel{4} \times \cancel{4} }  }

 \qquad

\sf {⇢ 6.67 \times {10}^{-11} \times 10 \times 10  }

 \qquad

\sf {⇢ 6.67 \times {10}^{-11} \times {10}^{2} }

 \qquad

\sf {⇢ 6.67 \times {10}^{(-11+2)}  }

 \qquad

\sf {⇢ 6.67 \times {10}^{-9}  }  \purple { \bigstar}

 \qquad

Now, we can also write it in usual form:

\sf {⇢ 6.67 \times {10}^{-9}N  }

 \qquad

\sf {⇢ \dfrac{667}{100} \times \dfrac{1}{ {10}^{-9}}  }

 \qquad

\sf {⇢ \dfrac{667}{ {10}^{2} \times {10}^{9} }  }

 \qquad

\sf {⇢ \dfrac{667}{ {10}^{(2+9)}  }  }

 \qquad

\sf {⇢ \dfrac{667}{ {10}^{11}  }  }

 \qquad

\sf {⇢ \dfrac{667}{ 100000000000 }  }

 \qquad

\boxed {\mathfrak \pink {⇢ 0.00000000667 N }}

 \qquad

Therefore, \sf { 0.00000000667 N } or \sf { 6.67 \times {10}^{-9}N  } is the gravitation form of attraction between them.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions