Math, asked by bangtanworld7562, 1 month ago

Two opposite angles of a parallelogram are (2x 10)° and (50 3x)°. Find the measures of each of angle of the parallelogram.​

Answers

Answered by n0171mpsbls
0

Answer:

Since opposite angles of a parallelogram are equal. Therefore,

3x−2=50−x⇒x=13

(3x−2)

=3(13)−2=37

The measures of the adjacent angles of a parallelogram add up to be 180 degrees, or they are supplementary.

Another angle =180−37=143

The measure of each angle of the parallelogram.

37

,143

,37

,143

Answered by SparklingThunder
57

\huge\purple{ \underline{ \boxed{\mathbb{\red{QUESTION : }}}}}

Two opposite angles of a parallelogram are (2x-10)° and (50-3x)°. Find the measures of each angle of the parallelogram.

\huge\purple{ \underline{ \boxed{\mathbb{\red{ANSWER : }}}}}

Measurements of each angles of the parallelogram are 14° , 14° , 166° and 166° .

\huge\purple{ \underline{ \boxed{\mathbb{\red{EXPLANATION : }}}}}

\green{ \large \underline{ \mathbb{\underline{GIVEN : }}}}

Two opposite angles of a parallelogram are (2x-10)° and (50-3x)° .

 \green{ \large \underline{ \mathbb{\underline{TO  \: FIND : }}}}

Find the measures of each angle of the parallelogram.

\green{ \large \underline{ \mathbb{\underline{SOLUTION: }}}}

We know that opposite angles of parallelogram are equal . Therefore ,

 \displaystyle \bf \implies2x - 10  = 50 - 3x \\  \\ \displaystyle \bf \implies2x + 3x = 50 + 10 \\  \\ \displaystyle \bf \implies5x = 60 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \bf \implies x =  \frac{60}{5}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \bf \implies x = 12 \degree \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \purple{  \boxed{\begin{array}{l} \bf(2x - 10) \degree = (24 - 10) \degree = 14 \degree \\  \\  \bf(50 - 3x) \degree =(50 - 36) \degree = 14\degree \end{array}}}

We know that adjacent angles of parallelogram are equal to 180 ° . Therefore ,

Let adjacent angles as " a " .

Since both angles are parallel to each other , therefore they are also equal .

 \displaystyle \bf \implies  14 \degree  + a = 180\degree  \:  \\  \\ \displaystyle \bf \implies  a = 180\degree - 14 \degree \\  \\ \displaystyle \bf \implies a = 166\degree \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Other two angles are 166° each .

\green{ \large \underline{ \mathbb{\underline{VERIFICATION : }}}}

We know that sum of all angles of parallelogram is equal to 360° .

 \displaystyle \bf \implies14\degree + 14 \degree+ 166\degree + 166\degree = 360 \degree \\  \\ \displaystyle \bf \implies28\degree + 332\degree = 360 \degree \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \displaystyle \bf \implies360 \degree = 360 \degree \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Hence , Verified .

\green{ \large \underline{ \mathbb{\underline{KNOW\:MORE : }}}}

 \purple{ \boxed{ \begin{array}{l}  \green{\mathbb{ \underline{\underline{PROPERTIES  \: OF \:  PARALLELOGRAM:}}}} \\  \\  \bullet \:  \textsf {The opposite sides are parallel and equal}. \\  \\ \bullet \textsf{The opposite angles are equal .} \\  \\  \bullet \textsf{The adjacent angles are supplementary .}\\  \\  \bullet  \: \textsf{If  any one of the angles is a right angle, then all the other angles will be at right angle.} \\   \\   \bullet  \: \textsf{The two diagonals bisect each other.} \\  \\  \bullet  \: \textsf{Each diagonal bisects the parallelogram into two congruent triangles .}\\  \\ \bullet  \: \textsf{Sum of square of all the sides of parallelogram is equal to the sum of square of its diagonals.}\end{array}}}

Similar questions