Math, asked by Shashankgodiyal5875, 10 months ago

Two parallel sides of trapezium are 120 and 154 and otehr two are 50 and 52 find area

Answers

Answered by Anonymous
0

ANSWER:-

Given:

Two parallel sides of trapezium are 120cm and 154cm & other two are 50cm & 52cm.

To find:

Find the area.

Solution:

Draw a line DE parallel to AB & draw a Perpendicular DF on CB.

It can be observed that ABED is a parallelogram.

BE= AD= 120cm

ED= AB= 50cm

EC= 154 - BE = 154-120 = 34cm.

Now,

Using the Heron's Formula, we get;

For ∆DEC,

Semi-perimeter,

  =  >  \frac{a + b + c}{2}

 =  >  \frac{50 + 52 + 34}{2}  \\  \\  =  >  \frac{136}{2}  \\  \\  =  > 68cm

Therefore,

Area of ∆,

 =  >  \sqrt{s(s - a)(s - b)(s - c)}

Area of ∆DEC,

 =  >  \sqrt{68(68 - 50)(68 - 52)(68 - 34)}  \\  \\  =  >  \sqrt{68(18)(16)(34)}  \\  \\  =  >  \sqrt{68 \times 18 \times 16 \times 34}  \\  \\  =  >  \sqrt{665856}  \\  \\  =  > 816 {cm}^{2}

Area of ∆ DEC;

 =  >  \frac{1}{2}  \times EC\times DF \\  \\  =  > 816  =  \frac{1}{2}  \times 34 \times DF \\  \\  =  > DF =  \frac{1632}{34}  \\  \\  =  > DF= 48cm

Now,

Area of trapezium:

 =  >  \frac{1}{2} \times (AD  + BC) \times DF \\  \\  =  >  \frac{1}{2}  \times (120 + 154) \times 48 \\  \\  =  >  \frac{1}{2}  \times 274 \times 48 \\  \\  =  > 274 \times 24 \\  \\  =  > 6576cm {}^{2}

Hope it helps ☺️

Attachments:
Similar questions