Physics, asked by yedukondaluregion, 10 months ago

two particles of mass 100 gm and 300 gm have at a given time velocity (10i -7j +6k) and( 7i- 9j+ 6k)m/s respectively the velocity of center of mass system ​

Answers

Answered by shadowsabers03
2

Velocity of center of mass of a system of two particles of masses \sf{m_1} and \sf{m_2} moving with velocities \bf{v_1} and \bf{v_2} respectively is given by,

\longrightarrow\bf{\bar v}=\dfrac{\sf{m_1}\bf{v_1}+\sf{m_2}\bf{v_2}}{\sf{m_1+m_2}}

According to the question,

  • \sf{m_1=100\ g}

  • \sf{m_2=300\ g}

  • \bf{v_1}=\sf{10}\,\bf{\hat i}-\sf{7}\,\bf{\^j}+\sf{6}\,\bf{\^k}

  • \bf{v_2}=\sf{7}\,\bf{\hat i}-\sf{9}\,\bf{\^j}+\sf{6}\,\bf{\^k}

Hence,

\longrightarrow\mathbf{\bar v}=\sf{\dfrac{100\left(\sf{10}\,\bf{\hat i}-\sf{7}\,\bf{\^j}+\sf{6}\,\bf{\^k}\right)+300\left(\sf{7}\,\bf{\hat i}-\sf{9}\,\bf{\^j}+\sf{6}\,\bf{\^k}\right)}{100+300}}

\longrightarrow\mathbf{\bar v}=\sf{\dfrac{\sf{1000}\,\bf{\hat i}-\sf{700}\,\bf{\^j}+\sf{600}\,\bf{\^k}+\sf{2100}\,\bf{\hat i}-\sf{2700}\,\bf{\^j}+\sf{1800}\,\bf{\^k}}{400}}

\longrightarrow\mathbf{\bar v}=\sf{\dfrac{\sf{3100}\,\bf{\hat i}-\sf{3400}\,\bf{\^j}+\sf{2400}\,\bf{\^k}}{400}}

\longrightarrow\underline{\underline{\mathbf{\bar v}=\sf{\dfrac{31}{4}}\,\bf{\hat i}-\sf{\dfrac{17}{2}}\,\bf{\^j}+\sf{6}\,\bf{\^k}}}

Similar questions