Math, asked by santa19, 3 days ago

Two persons 27 kilometres apart, starting at the same time are together in 9 hours if they walk in the same direction, but 3 hours if they walk in the opposite directions. find out the rate of walking of each?



Spams will be reported ​

Answers

Answered by ӋօօղցӀҽҍօօղցӀҽ
5

 \huge{ \color{pink}{ \colorbox{black}{answer}}}

Let a = the walking rate of the 1st person which is the fastest walker

let b = the walking rate of the 2nd person

 \large{ \bold{ \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}}

 \large{ \sf{ \underline{Given}}}

9(a - b) = 27

 \large{ \red{(walking \: the \: same \: direction)}}

3(a + b) = 27

 \large{ \orange{(walking \: the \: opposite \: direction)}}

 \large{ \green{ \fbox{{on \: simplifying}}}}

a-b=3

a+b=9

 \large{ \purple{solving}}

2a = 12

 \large{ \sf{a =  \frac{12}{5}}}

 \large{ \sf{a = 6 \frac{km}{hr} \:  \:  \: first \: person \: rate \: then \:  \: }}

6 + b = 9

 \large{ \sf{b = 3 \frac{km}{hr}  \:  \:  \:  \: second \: person \: rate}}

hope its help u

Answered by itzmedipayan2
8

Answer:

Hello Santa19!

Let the speed of A=x and B= y km/ hr.

if they move in the same direction then Relative speed = x-y.

if they move in opposite direction their Relative speed = x+y.

 \cancel3 =  \frac{ \cancel27  \: ^{9} }{x + y} \:  \: \:  \:  \:   \cancel9 =  \frac{ { \cancel{27}} \:  \: ^{3} }{x - y}  \\

x + \cancel y = 9  \:  \:  \:  \:  \:  \:  \:  \: x + y = 9\\  \frac{x -  \cancel y = 3}{2x = 12}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  y = 3 \\ x = 6 \: put \: in

Hence their speed is 6 and 3 km/hr.

Hope it helps you from my side

Similar questions