Physics, asked by nagesh4983, 11 months ago

Two point charges 3nC and -3nC are placed at A and B corners of an equilateral triangle of side 0.1m .find the resultant electric field at c

Answers

Answered by NehaKari
15

Given :

Two point charges 3nC and -3nC placed at the two corners of an equilateral triangle.

side of the equilateral triangle = 0.1 m

To Find :

Electric Field at C

Solution :

Electric Field produced by a charge of 3nC (E) = \frac{1}{4\pi E_{0} } \frac{q}{r^{2} }

(Where, q = charge; r = distance between the point where we need to find the field and the charge)

                     E = \frac{1}{4\pi E_{0} } \frac{3 X 10^{-9} }{(0.1)^{2} }    (3nC = 3 × 10^{-9} C)

                     E =  9 X 10^{9} X  \frac{3 X 10^{-9} }{(0.1)^{2} }

                     E = 2700 V/m

Resultant Electric Field at point C (E') = \sqrt{E^{2} + E^{2}  + 2.E.Ecos120}

(angle between two field vectors is 120°)

                                                             = \sqrt{2E^{2}  + 2E^{2}sin30 } (cos120° = sin30°)

                                                             = \sqrt{2E^{2} (1 + sin30)}

                                                             = \sqrt{2E^{2}(1 + \frac{1}{2} ) }

                                                             = \sqrt{2E^{2} X \frac{3}{2}  }

                                                             = \sqrt{3}  E

                                                             = \sqrt{3} × 2700

                                                            = 4676.54 V/m

∴ The resultant electric field is 4676.54 V/m.

Answered by Anonymous
24

\underline\red{Answer:}

\red{ \small{\text{Electric Field produced by a charge: }}} \\  E = \frac{1}{4 π E_{0}} \frac{q}{ {r}^{2} }

Where, q = charge; r = distance between the point.

\blue{ \text{Electric field at c due to A is:}}

E_{A}=\frac{1}{4π E_{0}} \frac{q}{r²}

E_{A}=9×10^9×\frac{3×{10}^{ - 9} }{(0.1)²}

E_{A}=2700 N/c  \:  \:  \: \text{ along Ac} \:

\pink{ \text{Electric field at c due to B \: is:}}

E_{B}=\frac{1}{4π E_{0}} \frac{q}{r²}

E_{B}=9×10^9×\frac{3×{10}^{ - 9} }{(0.1)²}

E_{A}=2700 N/c  \:  \:  \: \text{ along AB} \:

\blue{\text{Resultant field at c}}

E=\sqrt{E_{A}^2+E_{B}²+2 E_{A}E_{B} cos \theta}

E_{A}=E_{B}=2700N/c

Angle between them is 120°

E=\sqrt{E_{A}^2+E_{A}²+{2}E_{A}E_{A} cos 120}

E=\sqrt{E_{A}^2+E_{A}²+\cancel{2}E_{A}²(- \frac{1}{ \cancel2}})

E=\sqrt{E_{A}^2+E_{A}² - E_{A}^{2}  }

E=\sqrt{E_{A}²}

E=E_{A}

E=2700N/c

∴ The resultant electric field is 2700N/c

Attachments:
Similar questions