Physics, asked by Palandr7351, 10 months ago

Two point charges each of magnitude 20mc separated by a distance of 1.5m in a large vessel of water. The relative permitivity of water is 80. Calculate the force between them

Answers

Answered by BrainlyConqueror0901
20

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Force=0.02N}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:\implies Magnitude \: of \: point \: charges = 20 \: \mu C\\  \\  \tt:  \implies Distance \: between \: them(r) = 1.5  \: m \\  \\  \tt:  \implies Relative \: permitivity( \epsilon_{r}) = 80 \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Force \: between \: them(F) =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies F=  \frac{1}{4\pi \: \epsilon}  \frac{q_{1} q_{2}  }{ {r}^{2} }  \\  \\ \tt:  \implies F =  \frac{1}{4\pi  \: \epsilon_{o}  \:  \epsilon_{r}  }  \frac{20 \times 20}{ {1.5}^{2} }  \\  \\ \tt:  \implies F=  \frac{9 \times  {10}^{ 9} \times 400 \times  {10}^{ - 12}  }{80 \times 2.25}  \\\\ \tt:\implies F=\frac{9\times 4\times 10^{9-10}}{180} \\\\ \tt:  \implies F=  \frac{3.6}{180}  \\  \\  \green{\tt:  \implies F= 0.02 \: N} \\  \\   \green{\tt \therefore Force \: between \: them \: is \: of \: 0.02 \: N}

Answered by AdorableMe
13

GIVEN :-

Magnitude of the point charges = \sf{20\mu}

Distance between them(r) = 1.5 m

Relative permitivity of water(\sf{\epsilon_r}) = 80

TO FIND :-

The force between them.

FORMULA TO BE USED :-

\displaystyle{\sf{F=\frac{1}{4\pi \epsilon}\times \frac{q_1q_2}{r^2}  }}

SOLUTION :-

Putting the known values in the above formula :-

\displaystyle{\sf{\implies F=\frac{1}{4\pi \epsilon_o \epsilon_r}\times \frac{20^2}{1.5^2}  }}\\\\\\\displaystyle{\sf{\implies F=\frac{9\times 10^9\times400\times10^{-12}}{2.25\times80}   }}\\\\\\\displaystyle{\sf{\implies F=\frac{3600\times 10^{9+(-12)}}{180}   }}\\\\\\\displaystyle{\sf{\implies F=20\times10^{-3}  }}\\\\\boxed{\displaystyle{\sf{\implies F=0.02\ N   }}}

∴ Thus, the force between them is 0.02 N.

Similar questions