Two poles of equal heights are standing opposite each other on either side of the road which 80 ft width.From a point between them on the road the angle of elevation of the top of the poles are 60° and 30°.Find the height of the pole and the distance of the point from the pole
Answers
Given:-
AB and CD be the two poles of equal height.
Their heights be H m.
BC be the 80 m wide road.
P be any point on the road.
Let ,
CP be x m,
BP = (80 – x) .
Also, ∠APB = 60° and ∠DPC = 30°
In right angled triangle DCP,
Tan 30° = CD/CP
⇒ h/x = 1/√3
⇒ h = x/√3 ---------- (1)
In right angled triangle ABP
Tan 60° = AB/AP
⇒ h/(80 – x) = √3
⇒ h = √3(80 – x)
⇒ x/√3 = √3(80 – x)
⇒ x = 3(80 – x)
⇒ x = 240 – 3x
⇒ x + 3x = 240
⇒ 4x = 240
⇒ x = 60
Height of the pole, h = x/√3 = 60/√3 = 20√3.
Thus, position of the point P is 60 m from C and height of each pole is 20√3 m.
hope it helps you
✒ ʟᴇᴛ ᴀʙ ᴀɴᴅ ᴄᴅ ʙᴇ ᴛᴡᴏ ᴘᴏʟᴇs ᴏғ ᴇϙᴜᴀʟ ʜᴇɪɢʜᴛs ʜ ᴍᴇᴛʀᴇ ᴀɴᴅ ʟᴇᴛ ᴘ ʙᴇ ᴀɴʏ ᴘᴏɪɴᴛ ʙᴇᴛᴡᴇᴇɴ ᴛʜᴇ ᴘᴏʟᴇs, sᴜᴄʜ ᴛʜᴀᴛ
ᴀɴɢʟᴇ ᴀᴘʙ = 60° ᴀɴᴅ ᴀɴɢʟᴇ ᴅᴘᴄ = 30°.
ᴛʜᴇ ᴅɪsᴛᴀɴᴄᴇ ʙᴇᴛᴡᴇᴇɴ ᴛᴡᴏ ᴘᴏʟᴇs ɪs 80 ᴍ. (ɢɪᴠᴇɴ)
ʟᴇᴛ ᴀᴘ = x ᴍ, ᴛʜᴇɴ ᴘᴄ = (80 - x) ᴍ.
ɴᴏᴡ, ɪɴ ∆ᴀᴘʙ, ᴡᴇ ʜᴀᴠᴇ
ᴛᴀɴ 60° = ᴀʙ/ᴀᴘ = ʜ/x
=> √3 = ʜ/x
=> ʜ = √3 x .....→ (ɪ)
ᴀɢᴀɪɴ ɪɴ ∆ᴄᴘᴅ, ᴡᴇ ʜᴀᴠᴇ
ᴛᴀɴ 30° = ᴅᴄ/ᴘᴄ = ʜ/(80 - x)
=> 1/√3 = ʜ/80 - x
=> ʜ = 80 - x /√3 .....→ (ɪɪ)
ғʀᴏᴍ (ɪ) ᴀɴᴅ (ɪɪ), ᴡᴇ ʜᴀᴠᴇ
√3x = 80 - x/√3
=> 3x = 80 - x
=> 4x = 80
=> x = 80/4 = 20 ᴍ.
ɴᴏᴡ, ᴘᴜᴛᴛɪɴɢ ᴛʜᴇ ᴠᴀʟᴜᴇ ᴏғ x ɪɴ ᴇϙᴜᴀᴛɪᴏɴ (ɪ), ᴡᴇ ʜᴀᴠᴇ,
ʜ= √3 × 20 = 20√3
ʜᴇɴᴄᴇ, ᴛʜᴇ ʜᴇɪɢʜᴛ ᴏғ ᴛʜᴇ ᴘᴏʟᴇ ɪs 20√3ᴍ ᴀɴᴅ
ᴛʜᴇ ᴅɪsᴛᴀɴᴄᴇ ᴏғ ᴛʜᴇ ᴘᴏɪɴᴛ ғʀᴏᴍ ғɪʀsᴛ ᴘᴏʟᴇ ɪs
20 ᴍ ᴀɴᴅ ᴛʜᴀᴛ ᴏғ ᴛʜᴇ sᴇᴄᴏɴᴅ ᴏɴᴇ ɪs 60 ᴍ.