Math, asked by brainlyshacker, 9 months ago

Two poles of equal heights are standing opposite to each other on either side of the road, which is 120 feet wide.From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30° respectively. Find the height of the poles and the distance of the point from the poles​

Answers

Answered by Anonymous
43

\huge{\orange{\underline{\red{\mathbb{Question}}}}}

_______________________

Two poles of equal heights are standing opposite to each other on either side of the road, which is 120 feet wide.From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30° respectively. Find the height of the poles and the distances of the point from the poles.

_______________________

\huge{\orange{\underline{\red{\mathbb{Solution}}}}}

From\: the\: figure

 \:  \:  \:  \tan60° =  \frac{h}{x}  \:  \:  \sqrt{3 }  =  \frac{h}{x}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: h =  \sqrt{3} x \:  \: ........ \: (1) \\  \\ also \:  \tan30° =  \frac{h}{120 - x}  \:  \:  \frac{1}{ \sqrt{3} }  =  \frac{h}{120 - x}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: h =  \frac{120 \times  x}{ \sqrt{3} } \:  \: ....... \: (2) \\  \\ from \: (1) \: and \: (2) \\  \\  ⇒\sqrt{3} x =  \frac{120 - x}{ \sqrt{3} }  \\ ⇒ \sqrt{3} . \sqrt{3} x = 120 - x \\ ⇒3x = 120 - x \\ ⇒3x + x = 120 \\ ⇒4x = 120 \\  \\ ⇒x =  \frac{120}{4}  = 30ft. \\  \\ now \: h =  \sqrt{3} x =  \sqrt{3}  \times 30  \\  = 1.732 \times 30 \\  = 51.960 \: feet \\

∴\: distance \:of\:the\:poles=30\:ft.\:and

120-30\:fts\:=\red{90\:ft.}

height\:of\:each\:pole=\red{51.96\:ft.}

Attachments:
Answered by Rohit18Bhadauria
6

Answer:

Height of the pole= 51.96m

Distance of given point from poles= 30m and 90m

\tt\bold{\underline{Solution}}

Let AB and CD be two towers of equal height 'h'. DB be the road of width 120m. E be the point on the road such that DE=x, then EB=120-x.

\sf\bold{\underline{Diagram:}} Please see the provided attachment.

Things to be known before solving question:

\sf\rightarrow{\tan{\theta}=\dfrac{Perpendicular}{Base}}

\sf\rightarrow{\tan{30}^{\circ}=\dfrac{1}{\sqrt{3}}}

\rightarrow\sf{\tan{60}^{\circ}={\sqrt{3}}}

\rightarrow\sf{\sqrt{3}=1.732}

In ΔABE,

\rightarrow\sf{\tan{30}^{\circ}=\dfrac{AB}{BE}}

\rightarrow\sf{\dfrac{1}{\sqrt{3}}=\dfrac{h}{120-x}}

\rightarrow\sf{h=\dfrac{120-x}{\sqrt{3}}\ \ \ \ \ \ \ \ \ \longrightarrow\ (1)}

In ΔCDE,

\rightarrow\sf{\tan{60}^{\circ}=\dfrac{CD}{DE}}

\rightarrow\sf{{\sqrt{3}}=\dfrac{h}{x}}

\rightarrow\sf{h={\sqrt{3}x}\ \ \ \ \ \ \ \ \ \ \ \ \ \longrightarrow\ (2)}

From (1) and (2)

\rightarrow\sf{{\dfrac{120-x}{\sqrt{3}}={\sqrt{3}x}}}

\rightarrow\sf{120=x+3x}

\rightarrow\sf{120=4x}

\rightarrow\sf{x=\dfrac{120}{4}}

\rightarrow\sf{\purple{x=30}}

☛ So, Distance of point E from:

  • \tt\green{ {Pole\:AB=120-x=120-30=90m}}
  • \tt\green{ {Pole\:CD=x=30m}}

☛ Also, height of both the poles

  • \tt{\green{ h=\sqrt{3}x}}
  • \tt{\green{ h=30\sqrt{3}}}
  • \tt{\green{h=30\times1.732}}
  • \tt{\green{h=51.96m}}
Attachments:

mysticd: x = 120/4 not x = 120/3
Similar questions