Two positive charges of magnitude q are placed at the ends of a side
Answers
Answer:
The kinetic energy at the center of square is \dfrac{1}{4\pi\epsilon_{0}a}2q(1-\dfrac{1}{\sqrt{5}})4πϵ0a12q(1−51)
Explanation:
Given that,
Square side = 2 a
Charge = q
According to figure,
The electric potential at P
V_{p}=\dfrac{1}{4\pi \epsilon_{0}}\times q(\dfrac{1}{a}+\dfrac{1}{a}-\dfrac{1}{a\sqrt{5}}-\dfrac{a}{a\sqrt{5}})Vp=4πϵ01×q(a1+a1−a51−a5a)
V_{p}=\dfrac{1}{4\pi\epsilon_{0}a}\times 2q(1-\dfrac{1}{\sqrt{5}})Vp=4πϵ0a1×2q(1−51)
The electric potential at O
V_{o}=\dfrac{1}{4\pi \epsilon_{0}}\times q(\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}})Vo=4πϵ01×q(21+21−21−21)
V_{o}=0Vo=0
The difference is
V_{p}-V_{o}=\dfrac{1}{4\pi\epsilon_{0}a}2q(1-\dfrac{1}{\sqrt{5}})Vp−Vo=4πϵ0a12q(1−51)
The total energy of the charge q at point P
E= \dfrac{1}{4\pi\epsilon_{0}a}2q(1-\dfrac{1}{\sqrt{5}})E=4πϵ0a12q(1−51)
Here, The kinetic energy is zero.
The total energy of the charge q at point O
E= \dfrac{1}{4\pi\epsilon_{0}a}2q(1-\dfrac{1}{\sqrt{5}})E=4πϵ0a12q(1−51)
Here, The potential energy is zero
Hence, The kinetic energy at the center of square is \dfrac{1}{4\pi\epsilon_{0}a}2q(1-\dfrac{1}{\sqrt{5}})4πϵ0a12q(1−51)