Math, asked by shivam2000, 1 year ago

Two posts are k metres apart and the height of one is double that of the other. If from the middle point of the line joining their feet, an observer finds the angular elevations of their tops to be complementary, then find the height (in metres) of the shorter post.

Answers

Answered by vikaskumar0507
117
                                                                                       |D
                                                                                       |
                                                                                       |   
                                                                                       |
                                                                                       |
         A|                                                                           |   2x                                            |                                                                           |   
           |                                                                           |           
       x  |                                                                           |  
           |                                                                           |                                               C |................k/2................B................k/2...............| E
           <---------------------------------k-------------------------->
     join the point A to B and B to D  to make Δ
let <ABC = α  and <DBE = 90 - α
in ΔABC 
tanα = AC/BC = x/(k/2)
tanα = 2x/k  ----------------(1)
in ΔDBE
tan(90-α) = DE/BE = 2x/(k/2)
cotα = 4x/k  
1/tanα = 4x/k
put the value of tanα from the (1) equation 
1/(2x/k) = 4x/k
k/2x = 4x/k
8x² = k²
x² = k²/8
x = k/2√2  meter


Answered by Revolution
122
dc=2*ab
ae=ec

angle e=x
then angle aeb= 90-x
so angle aeb= 1/tanx

look into the triangle edc
tan x= \frac{dc}{ec}
= \frac{2ab}{ae} ...(1)


look into the triangle bae
tan [tex] \frac{1}{tan/x}= \frac{ab}{ae} \\ \\ tan/x*ab=ae[/tex]
tanx=  \frac{ae}{ab} ...(2)

1=2
[tex] \frac{ae}{ab} = \frac{2ab}{ae} \\ \\ ae ^{2} =2a b ^{2} \\ ae=k/2 \\ ae ^{2} = \frac{k ^{2} }{4} \\ \\ \frac{k ^{2} }{4} =2ab ^{2} \\ ab ^{2} = \frac{k ^{2} }{8} \\ ab= \sqrt{ \frac{k ^{2} }{8} }[/tex]


Attachments:
Similar questions