Two posts are k metres apart and the height of one is double that of the other. If from the middle point of the line joining their feet, an observer finds the angular elevations of their tops to be complementary, then find the height (in metres) of the shorter post.
Answers
Answered by
117
|D
|
|
|
|
A| | 2x | |
| |
x | |
| | C |................k/2................B................k/2...............| E
<---------------------------------k-------------------------->
join the point A to B and B to D to make Δ
let <ABC = α and <DBE = 90 - α
in ΔABC
tanα = AC/BC = x/(k/2)
tanα = 2x/k ----------------(1)
in ΔDBE
tan(90-α) = DE/BE = 2x/(k/2)
cotα = 4x/k
1/tanα = 4x/k
put the value of tanα from the (1) equation
1/(2x/k) = 4x/k
k/2x = 4x/k
8x² = k²
x² = k²/8
x = k/2√2 meter
|
|
|
|
A| | 2x | |
| |
x | |
| | C |................k/2................B................k/2...............| E
<---------------------------------k-------------------------->
join the point A to B and B to D to make Δ
let <ABC = α and <DBE = 90 - α
in ΔABC
tanα = AC/BC = x/(k/2)
tanα = 2x/k ----------------(1)
in ΔDBE
tan(90-α) = DE/BE = 2x/(k/2)
cotα = 4x/k
1/tanα = 4x/k
put the value of tanα from the (1) equation
1/(2x/k) = 4x/k
k/2x = 4x/k
8x² = k²
x² = k²/8
x = k/2√2 meter
Answered by
122
dc=2*ab
ae=ec
angle e=x
then angle aeb= 90-x
so angle aeb= 1/tanx
look into the triangle edc
tan x=
=...(1)
look into the triangle bae
tan [tex] \frac{1}{tan/x}= \frac{ab}{ae} \\ \\ tan/x*ab=ae[/tex]
...(2)
1=2
[tex] \frac{ae}{ab} = \frac{2ab}{ae} \\ \\ ae ^{2} =2a b ^{2} \\ ae=k/2 \\ ae ^{2} = \frac{k ^{2} }{4} \\ \\ \frac{k ^{2} }{4} =2ab ^{2} \\ ab ^{2} = \frac{k ^{2} }{8} \\ ab= \sqrt{ \frac{k ^{2} }{8} }[/tex]
ae=ec
angle e=x
then angle aeb= 90-x
so angle aeb= 1/tanx
look into the triangle edc
tan x=
=...(1)
look into the triangle bae
tan [tex] \frac{1}{tan/x}= \frac{ab}{ae} \\ \\ tan/x*ab=ae[/tex]
...(2)
1=2
[tex] \frac{ae}{ab} = \frac{2ab}{ae} \\ \\ ae ^{2} =2a b ^{2} \\ ae=k/2 \\ ae ^{2} = \frac{k ^{2} }{4} \\ \\ \frac{k ^{2} }{4} =2ab ^{2} \\ ab ^{2} = \frac{k ^{2} }{8} \\ ab= \sqrt{ \frac{k ^{2} }{8} }[/tex]
Attachments:
Similar questions