Math, asked by 8eatharvbhandari1, 5 hours ago

two prallel sides of a trapazium are 60m and 77m, and the nonparallel sides are 25m and 26m. find the area of the trapazium.

Answers

Answered by varadad25
138

Answer:

The area of the trapezium is 1644 m².

Step-by-step-explanation:

NOTE: Refer to the attachment for the diagram.

In figure, □ABCD is a trapezium.

AB ∥ CD

  • AB = 60 m
  • CD = 77 m
  • AD = 25 m
  • BC = 26 m

Now,

Draw BP ∥ AD and BQ ⊥ PC.

□ABPD is a parallelogram.

∴ AB = PD = 60 m

AD = BP = 25 m

Now,

CD = PD + PC - - - [ C - P - D ]

⇒ PC = CD - PD

⇒ PC = 77 - 60

PC = 17 m

Now, in △BPC,

  • BP ( a ) = 25 m
  • PC ( b ) = 17 m
  • BC ( c ) = 26 m

Semi perimeter = ( Sum of sides ) / 2

⇒ s = ( a + b + c ) / 2

⇒ s = ( 25 + 17 + 26 ) / 2

⇒ s = ( 25 + 25 + 17 + 1 ) / 2

⇒ s = ( 50 + 18 ) / 2

⇒ s = 68 ÷ 2

s = 34 m

Now, by Heron's formula,

Area of triangle = √[ s ( s - a ) ( s - b ) ( s - c ) ]

⇒ A ( △BPC ) = √[ 34 ( 34 - 25 ) ( 34 - 17 ) ( 34 - 26 ) ]

⇒ A ( △BPC ) = √( 34 * 9 * 17 * 8 )

⇒ A ( △BPC ) = √( 17 * 2 * 9 * 17 * 8 )

⇒ A ( △BPC ) = √( 17 * 17 * 3 * 3 * 16 )

⇒ A ( △BPC ) = √( 17 * 17 * 3 * 3 * 4 * 4 )

⇒ A ( △BPC ) = 17 * 3 * 4

A ( △BPC ) = 204 m²

Also,

Area of triangle = ( Base * Height ) / 2

⇒ A ( △BPC ) = ( PC * BQ ) / 2

⇒ 204 = ( 17 * BQ ) / 2

⇒ 17 * BQ = 204 * 2

⇒ BQ = ( 204 * 2 ) / 17

⇒ BQ = 204 ÷ 17 * 2

⇒ BQ = 12 * 2

BQ = 24 m

Now, we know that,

Area of trapezium = ( Sum of parallel sides * Height ) / 2

⇒ A ( □ABCD ) = [ ( AB + CD ) * BQ ] / 2

⇒ A ( □ABCD ) = [ ( 60 + 77 ) * 24 ] / 2

⇒ A ( □ABCD ) = ( 60 + 77 ) * 24 ÷ 2

⇒ A ( □ABCD ) = ( 60 + 77 ) * 12

⇒ A ( □ABCD ) = 12 * 60 + 12 * 77

⇒ A ( □ABCD ) = 720 + 12 * ( 70 + 7 )

⇒ A ( □ABCD ) = 720 + 840 + 84

⇒ A ( □ABCD ) = 1560 + 84

⇒ A ( □ABCD ) = 1644

∴ Area of trapezium = 1644 m²

∴ The area of the trapezium is 1644 m².

Attachments:
Answered by SugaryHeart
248

Step-by-step explanation:

Given :

  • Two prallel sides of a trapazium are 60m and 77m, and the nonparallel sides are 25m and 26m. find the area of the trapazium.

Solution :

Draw a line BC parallel to AD

Draw a perpendicular line BE on DF

ABCD is a parallelogram.

  • BC=AD=25cm

  • CD=AB=60cm

  • CF=77-CD=17cm

For Δ BCF

perimeter of triangle=(25+26+17)/2

= 68/2=34

By Heron's Formula of triangle= √s(s - a)(s - b)(s - c)

= √34(34 - 25)(34 - 26)(34 - 17)

= 204cm²

Now area of ΔBCF = 1/2 × base × height

= 1/2 BExCF204cm²

= 1/2x BEx17BE

= 408/17

= 24cm

Area of Trapezium = 1/2 (AB + DF) × BE

= 1/2(60 + 77) × 24

= 1644cm²

Similar questions