Math, asked by ayesharana73677, 1 year ago

two regular polygons are such that the ratio between their number of sides is 12 and the ratio measure of their interior angle is 3 ratio 4 find the number of sides of polygon ​

Answers

Answered by Rohit18Bhadauria
6

\rule{300}{2}

\huge\boxed{\underline{\mathcal{\red{A}\green{N}\pink{S}\orange{W}\blue{E}\pink{R:-}}}}

See this attachment

This is the best possible answer

\large{\boxed{\mathbf\pink{\fcolorbox{red}{yellow}{Hope\:you\:have}}}}

\large{\boxed{\mathbf\pink{\fcolorbox{red}{yellow}{Understood}}}}

<marquee>♥️Please mark it as♥️</marquee>

\huge\underline\mathcal\red{Brainliest}

</p><p>\huge{\boxed{\mathbb\green{\fcolorbox{red}{blue}{Thank\:You}}}}

\rule{300}{2}

Attachments:
Answered by BrainlySamrat
8

Step-by-step explanation:

The ratio of number of sides of two regular polygons is 3:4 and the ratio of measures of their each interior angle is 8:9. What is the sum of the number of diagonals of both the polygons equal to?

Ratio of sides of two regular polygons = 3 : 4

Let sides of first polygon = 3n

and sides of second polygon = 4n

Sum of interior angles of first polygon

= (2 × 3n – 4) × 90° = (6n – 4) × 90°

And sum of interior angle of second polygon

= (2 × 4n – 4) × 90° = (8n – 4) × 90°

∴ ((6n – 4) × 90°)/((8n – 4) × 90°) = 2/3

⇒ (6n – 4)/(8n – 4) = 2/3

⇒ 18n – 12 = 16n – 8

⇒ 18n – 16n = -8 + 12

⇒ 2n = 4

⇒ n = 2

∴ No. of sides of first polygon

= 3n = 3 × 2 = 6

And no. of sides of second polygon

= 4n = 4n × 2 = 8

Similar questions