Math, asked by newambesteelfurnitu, 10 months ago

Two sides of a triangle are of length 5
cm and 12 cm. If its perimeter is 30
cm. The area of triangle is​

Answers

Answered by Skyllen
14

[HeY Mate]

\huge\bold\red{Answer}

Given,

  • Side 1 = 5cm.
  • Side 2 = 12cm.
  • Perimeter = 30cm.

To Find,

  • Area of triangle?

Solution:

 \tt perimeter \: of \: triangle = 30cm \\ \tt 5m + 12cm + 3rd \: side = 30cm \\ \tt 3rd \: side = 30cm - 17cm \\ \tt 3rd \: side = 13cm. \\  \\  \\

Now, We will use Heron's Formula,

\tt s \implies  \frac{a + b + c}{2}  \\  \tt s =  \frac{5 + 12 + 13}{2}  \\  \tt s =  \frac{30}{2}  \\  \tt s=  15 \\  \\  \\

\tt area \: of \: triangle =  >  \sqrt{s(s - a)(s - b)(s - c)}  \\ \tt =  \sqrt{15(15 - 5)(15 - 12)(15 - 13)} \tt \\ \tt =  \sqrt{15(10)(3)(2)}  \\ \tt =  \sqrt{15(60)}  \\ \tt =  \sqrt{900}  \\ \tt = 30cm {}^{2}  \\  \\  \\

I Hope It Helps You✌️

Answered by Anonymous
20

Given :

  • Side of triangle ( a ) = 5 cm

  • Side of triangle ( b ) = 12 cm

  • Perimeter of triangle = 30 cm

To Find :

  • Area of the triangle

Solution :

  • Fisrt we have to find third side ( c ) of the triangle

\implies \boxed{ \sf \red{ Perimeter = a + b + c}} \\  \\ \sf \implies30 = 5 + 12 + c \\  \\ \sf \implies30 = 17 + c \\  \\ \sf \implies 30 - 17 = c \\  \\\sf \implies c = 13

Now Semi-perimerter of the triangle

\implies \boxed{\sf \green{s =  \frac{a + b + c}{2}}} \\  \\ \sf \implies s = \frac{5 + 12 + 13}{2}  \\  \\\sf \implies s = \frac{30}{2} \\  \\   \sf \implies s =15

By using Heron's formula

 \large \boxed{\boxed{\sf \blue{Area_{triangle} =  \sqrt{s(s - a)(s - b)(s - c)}}}} \\  \\  \sf \implies \sqrt{15(15 - 5)(15 - 12)(15 - 13)} \\  \\\sf \implies \sqrt{15 \times 10 \times 3 \times 2} \\  \\ \sf \implies \sqrt{900}\\  \\ \sf \implies30 \\  \\ \large\implies \boxed{ \boxed{  \sf \orange{ Area_{triangle} =30  \: {cm}^{2}}}}

Similar questions