Math, asked by priyanshu4355, 1 year ago

two solids of right cylindrical shape of 49 cm and 35 cm high and their base diameter 16 cm and 14 cm respectively. both are melted and moulded into a single cylinder 56 cm high. find its base diameter

Answers

Answered by BEJOICE
19

volume \: of \: two \: cylinders \\  =  \frac{\pi}{4}   \times {16 }^{2}  \times 49 +   \frac{\pi}{4}  \times  {14 }^{2}  \times 35 \\  =  \frac{\pi}{4} \times  19404 \\ let \: diameter \: of \: single \: cylinder \: be \:  \: d \\ then \:  \frac{\pi}{4}  {d}^{2}  \times 56 = \frac{\pi}{4} \times  19404 \\  {d}^{2}  =  \frac{19404}{56}  = 346.5 \\ d = 18.6
Answered by Anonymous
12
\underline{\huge{\text{Solution:}}}

...........................................................................


\textit{\underline{\text{Volume of two cylinders:}}}

\bold{ \frac{\pi}{4} \times {16}^{2} \times 49 + \frac{\pi}{4} \times {14}^{2} \times 35}

\bold{ \frac{\pi}{4} \times 19404}

\textit{\underline{\text{Diameter (d):}}}

\bold{ \frac{\pi}{4} {d}^{2} \times 56 = \frac{\pi}{4} \times 19404}

\bold{ {d}^{2} = \frac{19404}{56} = 346.5}

\bold{So,\: the \: base \: diameter \: is}

\bold{d = 18.6} ✔️


...........................................................................

_______________

\bold{\fbox{Hope\:It\:Helps\:!!!}}
_______________
Similar questions