two straight lines AB and CD cut each other at O. if angleBOD = 65, then find angleBOC
Answers
Step-by-step explanation:
BOC=117°
Step-by-step explanation:
Given:
Two straight lines AB and CD cut each other at O.
\angle BOD = 63\degree∠BOD=63°
\angle BOD + \angle BOC = 180\degree∠BOD+∠BOC=180°
\pink { ( Linear \:pair )}(Linearpair)
\implies 63\degree + \angle BOC = 180\degree⟹63°+∠BOC=180°
\begin{gathered} \implies \angle BOC = 180\degree - 63\degree \\= 117\degree \end{gathered}
⟹∠BOC=180°−63°
=117°
Therefore.,
\red {\angle BOC} \green {= 117\degree}∠BOC=117°
Answer:
{= 117\degree}∠BOC=117°
Step-by-step explanation:
Given:
Two straight lines AB and CD cut each other at O.
\angle BOD = 63\degree∠BOD=63°
\angle BOD + \angle BOC = 180\degree∠BOD+∠BOC=180°
BOC = 180\degree⟹63°+∠BOC=180°
BOC = 180\degree - 63\degree \\= 117\degree
⟹∠BOC=180°−63°
=117°
Therefore {= 117\degree}∠BOC=117°