Math, asked by sam9ma1nmalvi, 1 year ago

Two tangents RQ and RP are drawn from an external point R to the circle with centre O. If angle PRQ=120, then prove that OR=PR+RQ.

Answers

Answered by sawakkincsem
721

∠OPR = ∠OQR = 90° ---- 1 


And in ΔOPR and ΔOQR 


∠OPR = ∠ OQR = 90° (from equation 1) 


OP = OQ (Radii of same circle) 


And  


OR = OR (common side) 


ΔOPR = ΔOQR (ByRHS Congruency) 


So, RP = RQ --- 2 


And  ∠ORP = ∠ORQ --- 3 


∠PRQ = ∠ORP + ∠ORQ 


Substitute ∠PQR = 120° (given)  


And from equation 3 we get 


∠ORP + ∠ORP = 120° 


2 ∠ORP = 120° 


∠ORP = 60° 


And we know cos 0 = Adjacent/hypotenuse 


So in ΔOPR we get  


Cos ∠ORP = PR/OR 


Cos 60° = PR/OR 


½ = PR/OR (we know cos 60° = ½) 


OR = 2PR 


OR = PR + PR (substitute value from equation 2 we get) 


OR = PR  + RQ

Answered by adityaprataps2004
147

Answer:


Step-by-step explanation:

given: PQ and RP are tangent from an external point R to the circle with center O such that angle PRQ=120

TO PROVE: PR+RQ=OR

CONSTRUCTION: Join OP and OR

PROOF: ∠OPR=∠OQR=90 (PR AND PQ ARE TANGENT)

NOW,

in ΔPRR

cos60=PR/OR

⇒1/2=PR/OR

⇒PR=1/2OR .......................... (1)

similarly,

in triangle QRO

RQ=1/2OR ....................(2)

adding (1) and (2)

we get

PR+PQ=  1/2OR +1/2OR

PR++PQ=OR

HENCE PROVED


Similar questions