Math, asked by megha220, 5 months ago

Two taps can fill a tank in 10 min and 15 Mim separately. A pipe can empty the full tank in 9 mins. If they are all opened together at the same time,in how much time will the tank be full​


megha220: please answer this question

Answers

Answered by Anonymous
7

Given:

  • Two taps can fill a tank in 10 min and 15 Min
  • A pipe can empty the full tank in 9 mins

To Find:

  • If they are all opened together at the same time,in how much time will the tank be full

Solution:

\sf: \implies { \orange{rate \: of \: work \: done \: by \: tap \: 1}} =  \frac{1}{10}  \\  \\ \sf: \implies { \orange{rate \: of \: work \: done \: by \: tap \: 2}}  =  \frac{1}{15}

we consider the values positive here as they are filling the tank

__________________________________________

\sf: \implies { \orange{rate \: of \: work \: done \: by \: pipe}}  =  \frac{ - 1}{9}  \\

we consider the value negetive here as it's emptying the tank

__________________________________________

Time taken when they are together operated:

\sf: \implies {  \blue{time: }}  \: \frac{1}{10} +   \frac{1}{15}  -  \frac{1}{9} \:  \:  \:   \\  \\\sf: \implies {  \blue{time: }}   \:  \frac{9}{90}   +  \frac{6}{90}  -  \frac{10}{90}  \\  \\ \sf: \implies {  \blue{time: }}    \: \frac{9 + 6 - 10}{90}  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf: \implies {  \blue{time: }}    \:  \cancel\frac{5}{90}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \\  \\ \sf: \implies {  \blue{time: }}   \frac{1}{18}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \:  \:  \:  \:  \:  \:  \:  \:  \:

\blue{ \underline{ \boxed{ \green{ \mathfrak{ \therefore \: time \: taken = 18mins}}}}}

 \sf{  \red{ - @mrcostheta}}


Anonymous: bawaal.!❤
Anonymous: hehehe thanks xD
Anonymous: Wonderfullo..!
Anonymous: thanks.!
Anonymous: ;)
Answered by Anonymous
8

Given:

↬Two taps can fill a tank in 10 min and 15 Min separately.

↬A pipe can empty the full tank in 9 mins.

To Find:

↬they are all opened together at the same time,in how much time will the tank be full.?

Solution:

let's calculate the rate of work done by them respectively per min:

 \sf \: rate \: of \: work \: done \: by \: tap \: a =  \frac{1}{10}  \\  \\  \sf \: rate \: of \: work \: done \: by \: tap \: b =  \frac{1}{15}  \\  \\ \sf \: rate \: of \: work \: done \: by \: pipe =  \frac{1}{9}

To find the rate of work done by them all together we add up the values:

: \implies  \tt \:  \frac{1}{10}  +  \frac{1}{15}   + ( -  \frac{1}{9} )  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ {\blue {\tt{ \:  \:  \:  \:  \:  \:  \:  ⇝\: l.c.m \: of \: 10,15,9 = 90}}} \\  \\ : \implies  \tt \frac{9}{90}  +  \frac{6}{90}  -  \frac{10}{90}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ : \implies  \tt \:  \frac{9 + 6 - 10}{90}   \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\ : \implies  \tt  \cancel\frac{5}{90}   \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \\  \\ : \implies  \frac{1}{18}   \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:

\blue{ \underline{ \boxed{ \pink{ \mathfrak{ \therefore \:it \: took \: 18 \: mins \: to \: fill \: the \: tank \: respectivly}}}}}

hope this helps.!!


Anonymous: mast.!❤
Anonymous: tq❤
Anonymous: :)
Similar questions