Two triangles have the same base lengths. One triangle has a height that is three times the height of the other triangle. Are the heights and the areas of the two triangles proportional?
Answers
Answered by
52
Topic :
- Mensuration
Given :
- Two triangles have same base lengths.
- One triangle has a height that is three times the height of the other triangle.
To Find :
- Whether the heights and areas of the two triangles are proportional ?
Concept Used :
Area of Triangle = ( Base × Height ) / 2
Solution :
Let two triangles be ∆1 and ∆2.
( Assume ∆1 has more height than ∆2. )
Let height of ∆1 be h.
Let height of ∆2 be h'.
Ratio of heights of the triangles,
It is given that,
h = 3h'
h/h' = 3
Ratio of areas of the triangles,
ar.(∆1)/ar.(∆2) = (1/2×Base×h)/(1/2×Base×h')
Canceling (1/2 × Base) from numerator and denominator,
ar.(∆1)/ar.(∆2) = h/h'
ar.(∆1)/ar.(∆2) = 3
As ratio of heights of the triangles and ratio of areas of triangle are equal, we can say heights and areas of the given two triangles are proportional.
Answer :
Yes, the heights and areas of the given two triangles are proportional.
Similar questions
Math,
1 month ago
India Languages,
1 month ago
English,
3 months ago
Science,
10 months ago
Political Science,
10 months ago