Physics, asked by kartikkhiratkar1264, 1 year ago


Two vectors A and B are such that |A + B = |A - Bl. The angle between the vectors A and B is
(A) O
(B) π/3 (C) π/2 (D) π

Answers

Answered by Anonymous
9

Solution :

Given:

✏ Two vectors A and B are such that |A+B| = |A-B|

To Find:

✏ Angle between the vectors A and B

Formula:

✏ As per parallelogram vector addition,

 \bigstar \:  \boxed{ \bf{ \pink{ | \vec{A} +  \vec{B}| =  \sqrt{ { | \vec{A}| }^{2}  +  { | \vec{B}|  }^{2}  + 2 | \vec{A}|  | \vec{B}|  \cos \theta}  }}}

✏ As per parallelogram vector

subtraction,

 \bigstar \:  \boxed{ \bf{ \purple{ | \vec{A}-   \vec{B}|   =   \sqrt{ { | \vec{A}| }^{2}  +  { | \vec{B}| }^{2}  - 2 | \vec{A}|  | \vec{B}|   \cos \theta} }}}

Calculation:

 \circ \bf \:  \red{ | \vec{A} +  \vec{B}|  =  | \vec{A} -  \vec{B}| } \\  \\  \circ \bf \:  \sqrt{ { | \vec{A}| }^{2}  +   { | \vec{B}| }^{2}  + 2 | \vec{A}|  | \vec{B}|  \cos \theta}  =  \sqrt{ { | \vec{A}| }^{2} +  { | \vec{B}| }^{2}  - 2 | \vec{A}|  | \vec{B}|  \cos \theta }  \\  \\  \circ \bf \: 2 | \vec{A}|  | \vec{B}|  \cos \theta + 2 | \vec{A}|  | \vec{B}|  \cos \theta = 0 \\  \\  \circ \bf \: 4 | \vec{A}|  | \vec{B}|  \cos \theta = 0 \\  \\  \circ \bf \:  \cos \theta = 0 \\  \\  \circ \bf \:  \theta =  { \cos}^{ - 1} (0) \\  \\  \circ \:  \boxed{ \tt{ \green{ \theta = 90 \degree =  \dfrac{\pi}{2} \: rad }}} \:  \orange{ \bigstar}

Answered by Saby123
0

 \tt{ \purple{ \leadsto{ \:  \phi \:  = 90°}}}

Attachments:
Similar questions