Math, asked by tulasimadineni1222, 11 months ago

Two vertices of a issosceles triangle are (2,0) and (2,5) find the third vertex if the length of the equal sides is 3

Attachments:

Answers

Answered by BrainlyConqueror0901
545

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore Coordinate\:of\:C=(0.35,2.5)}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \underline \bold{Given : }  \\  \implies  \text{Coordinate \: of \:A=(2,0)} \\  \\ \implies  \text{Coordinate \: of \: B=(2,5)} \\  \\  \implies  \text{AC= BC= 3  units}  \\  \\ \underline \bold{To \: Find : } \\\implies Coordinate\:of\:C=?

 \bold{Using \: Distance \: formula : } \\  \implies  \text{AB=BC} \\  \\  \implies  \sqrt{(2 - x) ^{2}  + (0 - y)^{2} }  =  \sqrt{(2 -x) ^{2}  +( 5 - y)^{2}  }  \\  \\  \text{Squaring \: both \: side : } \\  \implies \cancel{( 2 - x)^{2}}  +  {y}^{2}  =   \cancel {{(2 - x)}^{2}} +  {(5 - y)}^{2}  \\  \\  \implies  \cancel {y}^{2}  = 25 +   \cancel{y}^{2}  - 10y \\  \\  \implies 25 - 10y = 0 \\  \\  \implies   -  10y =  - 25 \\  \\  \implies  \text{y = 2.5} \\   \\  \text{Using \: Distance \: formula : } \\  \implies AC =  \sqrt{( x_{2} -   x_{1})^{2} +  ( y_{2} -   y_{1})^{2} }  \\  \\  \implies  3 =  \sqrt{(2 - x)^{2} +  (0 - 2.5)^{2} }  \\  \\  \implies 9 = (2 - x) ^{2}  + 6.25 \\  \\  \implies 9 - 6.25 =  ({2 - x)}^{2}  \\  \\   \implies \sqrt{  2.75} = 2 - x \\  \\  \implies 1.65 = 2 - x \\  \\  \implies x = 2 - 1.65 \\  \\   \implies  \text{x =0.35 } \\  \\  \therefore  \text{Coordinate \: of \: C= (0.35,2.5)}

Attachments:
Answered by sahildhande987
661

\huge{\underline{\sf{\red{Answer}}}}

Given:

Isosceles Triangle

Coordinates : A(2,0) B(2,5) C(x,y)

Distances of Equal Sides = 3 units

________________________________________

\star Formulae

  • Distance Formula PQ= \sqrt{(x_2-x_1 )^2 + (y_2-y_1)^2}
  • Quadratic Formula \dfrac{-b\pm\sqrt{b^2-4ac}}{2a}}

Solution:

Distance AB = \sqrt{(x_2-x_1 )^2 + (y_2-y_1)^2}

here,x_1=2,x_2=2,y_1=0,y_2=5

\leadsto \sqrt{(2-2 )^2 + (5-0)^2}

\leadsto \sqrt{0 + 5^2}

\implies AB= 5

from here we know that

AC = BC = 3

so

By applying the Distance Formula

\sqrt{(x -2 )^2 + (y-0)^2} = \sqrt{(x-2 )^2 + (y-5)^2}

Squaring Both the Sides

\leadsto  \cancel{(x-2)^2 }+ y^2 =\cancel{(x-2)^2} + (y-5)^2 =3

\implies \cancel{y^2}= \cancel{y^2}-10y +25

\implies 10y=25

\leadsto y= \dfrac{5}{2}

___________________________________

AC = 3

\sqrt{(x-2)^2 +y^2}=3

Squaring Both the sides

\implies (x-2)^2 +y^2 =9

\implies x^2 -4x +4 +y^2 =9

putting value of y

\leadsto x^2 - 4x-5+\bigg(\dfrac{5}{2}\bigg)^2

\implies x^2 - 4x-5+\bigg(\dfrac{25}{4}\bigg)

\implies x^2 - 4x+\bigg(\dfrac{-20+25}{4}\bigg)

\implies x^2 - 4x+\bigg(\dfrac{5}{4}\bigg)

When we compare

We get

a = 1 ,b = -4 , c= 5/4

using Quadratic Formula

\implies x=\dfrac{4\pm\sqrt{4^2-4\times1\times\dfrac{5}{4}}{2\times1}}

\implies x= \dfrac{4\pm\sqrt{16-5}}{2}

\implies \large{\boxed{\dfrac{2\pm\sqrt{11}}{2}}}

so the coordinates will be

\large{\boxed{\dfrac{2\pm\sqrt{11}}{2},\dfrac{5}{2}}}

Similar questions