two vertices of an isosceles triangle are (2 8) and (10 2). Find the third vertex if the length of the equal side is 10 unit
Answers
Answered by
30
let the third vertex is A(x,y)
and the given vertex are of base of isosceles Triangle B(2,8) and C(10,2)
As we know that two sides of isosceles Triangle are equal
Thus we calculate AB and AC by distance formula
AB=AC
![\sqrt{( {x - 2)}^{2} + ( {y - 8)}^{2} } = \sqrt{( {x - 10)}^{2} + ( {y - 2)}^{2} } \\ \\ ( {x - 2)}^{2} + ( {y - 8)}^{2} = ( {x - 10)}^{2} + ( {y - 2)}^{2} \\ \\ {x}^{2} - 4x + 4 + {y}^{2} - 16y + 64 = {x}^{2} - 20x + 100 + {y}^{2} - 4y + 4 \\ \\ - 4x - 16y + 20x + 4y = 104 - 68 \\ \\ 16x - 12x =36 \\ \\ 4x - 3y = 9 \\ \\ 4x = 9 + 3y \\ \\ x = \frac{9 + 3y}{4} \\ \\ \sqrt{( {x - 2)}^{2} + ( {y - 8)}^{2} } = \sqrt{( {x - 10)}^{2} + ( {y - 2)}^{2} } \\ \\ ( {x - 2)}^{2} + ( {y - 8)}^{2} = ( {x - 10)}^{2} + ( {y - 2)}^{2} \\ \\ {x}^{2} - 4x + 4 + {y}^{2} - 16y + 64 = {x}^{2} - 20x + 100 + {y}^{2} - 4y + 4 \\ \\ - 4x - 16y + 20x + 4y = 104 - 68 \\ \\ 16x - 12x =36 \\ \\ 4x - 3y = 9 \\ \\ 4x = 9 + 3y \\ \\ x = \frac{9 + 3y}{4} \\ \\](https://tex.z-dn.net/?f=+%5Csqrt%7B%28+%7Bx+-+2%29%7D%5E%7B2%7D+%2B+%28+%7By+-+8%29%7D%5E%7B2%7D+%7D+%3D+%5Csqrt%7B%28+%7Bx+-+10%29%7D%5E%7B2%7D+%2B+%28+%7By+-+2%29%7D%5E%7B2%7D+%7D+%5C%5C+%5C%5C+%28+%7Bx+-+2%29%7D%5E%7B2%7D+%2B+%28+%7By+-+8%29%7D%5E%7B2%7D+%3D+%28+%7Bx+-+10%29%7D%5E%7B2%7D+%2B+%28+%7By+-+2%29%7D%5E%7B2%7D+%5C%5C+%5C%5C+%7Bx%7D%5E%7B2%7D+-+4x+%2B+4+%2B+%7By%7D%5E%7B2%7D+-+16y+%2B+64+%3D+%7Bx%7D%5E%7B2%7D+-+20x+%2B+100+%2B+%7By%7D%5E%7B2%7D+-+4y+%2B+4+%5C%5C+%5C%5C+-+4x+-+16y+%2B+20x+%2B+4y+%3D+104+-+68+%5C%5C+%5C%5C+16x+-+12x+%3D36+%5C%5C+%5C%5C+4x+-+3y+%3D+9+%5C%5C+%5C%5C+4x+%3D+9+%2B+3y+%5C%5C+%5C%5C+x+%3D+%5Cfrac%7B9+%2B+3y%7D%7B4%7D+%5C%5C+%5C%5C+)
put this value in
![{x}^{2} - 20x + 100 + {y}^{2} - 4y + 4 = 100 \\ \\ since \: \: ab = 10 \: units \\ \\ ( { \frac{9 + 3y}{4} })^{2} - 20( \frac{9 + 3y}{4} ) + {y}^{2} - 4y + 4 = 0 \\ \\ \frac{1}{16} (81 + 54y+ 9 {y}^{2} ) - 45 - 15y + {y}^{2} - 4y + 4 = 0 \\ \\ 81 + 54y + 9 {y}^{2} - 16(45 - 15y + {y}^{2} - 4y + 4) = 0 \\ \\ - 7 {y}^{2} + 54y + 16 \times19y + 81 - 16 \times 49 = 0 \\ \\- 7 {y}^{2}+54y+304y+81-784=0\\\\\\- 7 {y}^{2}+358y-703=0\\\\y=\frac{-358±\sqrt{358^2+4(7)(703)}}{-14} \\\\ {x}^{2} - 20x + 100 + {y}^{2} - 4y + 4 = 100 \\ \\ since \: \: ab = 10 \: units \\ \\ ( { \frac{9 + 3y}{4} })^{2} - 20( \frac{9 + 3y}{4} ) + {y}^{2} - 4y + 4 = 0 \\ \\ \frac{1}{16} (81 + 54y+ 9 {y}^{2} ) - 45 - 15y + {y}^{2} - 4y + 4 = 0 \\ \\ 81 + 54y + 9 {y}^{2} - 16(45 - 15y + {y}^{2} - 4y + 4) = 0 \\ \\ - 7 {y}^{2} + 54y + 16 \times19y + 81 - 16 \times 49 = 0 \\ \\- 7 {y}^{2}+54y+304y+81-784=0\\\\\\- 7 {y}^{2}+358y-703=0\\\\y=\frac{-358±\sqrt{358^2+4(7)(703)}}{-14} \\\\](https://tex.z-dn.net/?f=%7Bx%7D%5E%7B2%7D+-+20x+%2B+100+%2B+%7By%7D%5E%7B2%7D+-+4y+%2B+4+%3D+100+%5C%5C+%5C%5C+since+%5C%3A+%5C%3A+ab+%3D+10+%5C%3A+units+%5C%5C+%5C%5C+%28+%7B+%5Cfrac%7B9+%2B+3y%7D%7B4%7D+%7D%29%5E%7B2%7D+-+20%28+%5Cfrac%7B9+%2B+3y%7D%7B4%7D+%29+%2B+%7By%7D%5E%7B2%7D+-+4y+%2B+4+%3D+0+%5C%5C+%5C%5C+%5Cfrac%7B1%7D%7B16%7D+%2881+%2B+54y%2B+9+%7By%7D%5E%7B2%7D+%29+-+45+-+15y+%2B+%7By%7D%5E%7B2%7D+-+4y+%2B+4+%3D+0+%5C%5C+%5C%5C+81+%2B+54y+%2B+9+%7By%7D%5E%7B2%7D+-+16%2845+-+15y+%2B+%7By%7D%5E%7B2%7D+-+4y+%2B+4%29+%3D+0+%5C%5C+%5C%5C+-+7+%7By%7D%5E%7B2%7D+%2B+54y+%2B+16+%5Ctimes19y+%2B+81+-+16+%5Ctimes+49+%3D+0+%5C%5C+%5C%5C-+7+%7By%7D%5E%7B2%7D%2B54y%2B304y%2B81-784%3D0%5C%5C%5C%5C%5C%5C-+7+%7By%7D%5E%7B2%7D%2B358y-703%3D0%5C%5C%5C%5Cy%3D%5Cfrac%7B-358%C2%B1%5Csqrt%7B358%5E2%2B4%287%29%28703%29%7D%7D%7B-14%7D+%5C%5C%5C%5C)
by this way we can solve the value of y by solving Quadratic equation.
thus value of x
and the given vertex are of base of isosceles Triangle B(2,8) and C(10,2)
As we know that two sides of isosceles Triangle are equal
Thus we calculate AB and AC by distance formula
AB=AC
put this value in
by this way we can solve the value of y by solving Quadratic equation.
thus value of x
Similar questions