Math, asked by adityakchauhan2005, 3 months ago

two zeroes of the polynomial p(x) x^3-4x^2+x+6 are 2 and -1 find the third zero​

Answers

Answered by mathdude500
3

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{p(x) =  {x}^{3}  -  {4x}^{2}  + x + 6} \\ &\sf{  \blue{\alpha  = 2}}\\ &\sf{ \green{ \beta  =  -  \: 1}} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{ \red{third \: zero \: of \: polynomial}}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  Let \: the \:   \begin{cases} &\sf{ \purple{third \: zero \: be \:  \gamma }}  \end{cases}\end{gathered}\end{gathered}

Now,

We know that,

\tt \:  \longrightarrow \: \boxed{\purple{\tt Sum\ of\ the\ zeroes=\frac{-b}{a}}}

OR

\tt \:  ⟼ \boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{3}}}}

\tt\implies \: \alpha  +  \beta   + \gamma  =  - \dfrac{( - 4)}{1}

\tt\implies \:2 \:  +  \: ( - 1) +  \gamma  = 4

\tt\implies \:1 +  \gamma  = 4

\tt\implies \: \gamma  = 3

\tt\implies \: \boxed{ \mathcal{ \purple{third \: zero \: of \: polynomial \: is \: 3}}}

Similar questions