U.16 ufa a + B = è, after hilfts (1 + tan a) (1 + tan B) = 2
If a + B = , then prove that (1 + tan 0) (1 + tan B) = 2
Answers
Answered by
1
(1+tanA)(1+tanB)=2
∴tan(A+B)=
1−tanAtanB
tan A + tan B
Now 1+tanA+tanB+tanAtanB=2
∴tan A + tan B=1−tanAtanB
∴
1−tanAtanB
tan A + tan B
∴ From (1) & (2)
tan(A+B)=1
∴A+B=
4
π
Similar questions