Math, asked by student8116, 1 year ago

u can sol it trignometry​

Attachments:

Answers

Answered by BrainlyConqueror0901
137

Answers:

\huge{\boxed{\sf{\sin(A) =\frac{\sqrt{\sec^{2}(A)-1}}{\sec(A)}}}}

\huge{\boxed{\sf{tan(A)=\sqrt{sec^{2}(A)-1}}}}

\huge{\boxed{\sf{cot(A)=\frac{1}{\sqrt{sec^{2}(A)-1}}}}}

\huge{\boxed{\sf{cosec(A)=\frac{sec(A)}{\sqrt{sec^{2}(A)-1}}}}}

Step-by-step explanation:

\huge{\boxed{\sf{SOLUTION-}}}

>>WE TAKE A RIGHT-ANGLED TRIANGLE

WHERE /_A AND /_C ARE ACUTE ANGLES AND /_B=90°

WE KNOW THAT,

 \cos(A)  =  \frac{1}{ \sec(A) }  \\ also \:   \\  { \sin(A) }^{2}  +  { \cos(A) }^{2}  = 1 \\   { \sin(A) }^{2}  = 1 -  { \cos(A) }^{2}  \\  \sin(A)  =  \sqrt{1 - ( \frac{1}{ \sec(A) })^{2}  }  \\  \sin(A)  =   \sqrt{ \frac{ \sec^{2}(A) - 1  }{ \sec ^{2} (A) } }=\frac{\sqrt{\sec^{2}(A)-1}}{\sec(A)}\\\\tan^{2}(A)+1=sec^{2}(A)\\tan^{2}=sec^{2}(A)-1\\tan(A)=\sqrt{sec^{2}(A)-1}\\\\cot(A)=\frac{cos(A)}{sin(A)}=\frac{\frac{1}{sec(A)}}{\frac{\sqrt{sec^{2}(A)-1}}{sec(A)}}\\cot(A)=\frac{1}{\sqrt{sec^{2}(A)-1}}\\\\cosec(A)=\frac{1}{sin(A)}=\frac{sec(A)}{\sqrt{sec^{2}(A)-1}}\\cosec(A)=\frac{sec(A)}{\sqrt{sec^{2}(A)-1}}

Similar questions