Math, asked by amalta1997, 1 year ago

u=f(2x-3y,3y-4z,4z-2x) then show that 6ux+4uy=-3uz

Answers

Answered by MaheswariS
32

\textbf{Given:}

U=f(2x-3y,3y-4z,4z-2x)

\text{Let,}\;p=2x-3y,\;q=3y-4z,\;r=4z-2x

\text{Consider,}

U_x=\frac{\partial{U}}{\partial{x}}

U_x=\frac{\partial{U}}{\partial{p}}\,\frac{\partial{p}}{\partial{x}}+\frac{\partial{U}}{\partial{q}}\,\frac{\partial{q}}{\partial{x}}+\frac{\partial{U}}{\partial{r}}\,\frac{\partial{r}}{\partial{x}}

U_x=\frac{\partial{U}}{\partial{p}}(2)+\frac{\partial{U}}{\partial{q}}(0)+\frac{\partial{U}}{\partial{r}}(-2)

\implies\bf\;U_x=2\,\frac{\partial{U}}{\partial{p}}-2\,\frac{\partial{U}}{\partial{r}}

U_y=\frac{\partial{U}}{\partial{y}}

U_y=\frac{\partial{U}}{\partial{p}}\,\frac{\partial{p}}{\partial{y}}+\frac{\partial{U}}{\partial{q}}\,\frac{\partial{q}}{\partial{y}}+\frac{\partial{U}}{\partial{r}}\,\frac{\partial{r}}{\partial{y}}

U_y=\frac{\partial{U}}{\partial{p}}(-3)+\frac{\partial{U}}{\partial{q}}(3)+\frac{\partial{U}}{\partial{r}}(0)

\implies\bf\;U_y=-3\,\frac{\partial{U}}{\partial{p}}+3\,\frac{\partial{U}}{\partial{q}}

U_z=\frac{\partial{U}}{\partial{z}}

U_z=\frac{\partial{U}}{\partial{p}}\,\frac{\partial{p}}{\partial{z}}+\frac{\partial{U}}{\partial{q}}\,\frac{\partial{q}}{\partial{z}}+\frac{\partial{U}}{\partial{r}}\,\frac{\partial{r}}{\partial{z}}

U_z=\frac{\partial{U}}{\partial{p}}(0)+\frac{\partial{U}}{\partial{q}}(-4)+\frac{\partial{U}}{\partial{r}}(4)

\implies\bf\;U_z=-4\,\frac{\partial{U}}{\partial{q}}+4\,\frac{\partial{U}}{\partial{r}}

\text{Now,}

\bf\;6\;U_x+4\;U_y

=6(2\,\frac{\partial{U}}{\partial{p}}-2\,\frac{\partial{U}}{\partial{r}})+4(-3\,\frac{\partial{U}}{\partial{p}}+3\,\frac{\partial{U}}{\partial{q}})

=12\,\frac{\partial{U}}{\partial{p}}-12\,\frac{\partial{U}}{\partial{r}}-12\,\frac{\partial{U}}{\partial{p}}+12\,\frac{\partial{U}}{\partial{q}}

=-12\,\frac{\partial{U}}{\partial{r}}+12\,\frac{\partial{U}}{\partial{q}})

=-3(4\,\frac{\partial{U}}{\partial{r}}-4\,\frac{\partial{U}}{\partial{q}})

=-3\;U_z

\implies\boxed{\bf\;6\;U_x+4\;U_y=-3\;U_z}

\textbf{Hence preoved}

Similar questions