Math, asked by katerajanikumari36, 1 month ago

Ü) Find the value of
Tan20 + Tan 40 + √3 Tan20° Tan40°​

Answers

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

We know,

\rm :\longmapsto\:60\degree  = 40\degree  + 20\degree

Apply tan on both sides, we get

\rm :\longmapsto\:tan60\degree  =tan( 40\degree  + 20\degree )

We know,

\boxed{ \bf{ \: tan(x + y) =  \frac{tanx + tany}{1 - tanxtany}}}

and

\boxed{ \bf{ \: tan60\degree  =  \sqrt{3} }}

So, on substituting all these values, we get

\rm :\longmapsto\: \sqrt{3} = \dfrac{tan40\degree  + tan20\degree }{1 - tan40\degree tan20\degree }

\rm :\longmapsto\: \sqrt{3} -  \sqrt{3}tan40\degree tan20\degree  = tan40\degree  + tan20\degree

\rm :\longmapsto\: \sqrt{3}  =  \sqrt{3}tan40\degree tan20\degree  +  tan40\degree  + tan20\degree

So,

\rm :\longmapsto\:tan40\degree  + tan20\degree  +  \sqrt{3}tan40\degree tan20\degree  =  \sqrt{3}

Additional Information :-

\boxed{ \bf{ \: sin(x + y) = sinxcosy + sinycosx}}

\boxed{ \bf{ \: sin(x  -  y) = sinxcosy  -  sinycosx}}

\boxed{ \bf{ \: cos(x + y) = cosxcosy - sinxsiny}}

\boxed{ \bf{ \: cos(x  -  y) = cosxcosy  +  sinxsiny}}

\boxed{ \bf{ \: tan(x - y) =  \frac{tanx + tany}{1 - tanxtany}}}

\boxed{ \bf{ \:  {sin}^{2}x -  {sin}^{2}y = sin(x + y)sin(x - y)}}

\boxed{ \bf{ \:  {cos}^{2}y -  {cos}^{2}x = sin(x + y)sin(x - y)}}

\boxed{ \bf{ \:  {cos}^{2}x -  {sin}^{2}y = cos(x + y)cos(x - y)}}


Saby123: Awesome !
Similar questions