Math, asked by parthjadav, 3 months ago

u= log tan(π/4+x/2) prove that, sinh u = tan x​

Answers

Answered by farhaanaarif84
1

Answer:

Given, u=logtan(

4

π

+

2

θ

)

tanh(

2

u

)=

cosh(

2

u

)

sinh(

2

u

)

=

e

2

u

+e

2

u

e

2

u

−e

2

u

=

tan(

4

π

)+

cot(

4

π

+

2

θ

)

tan(

4

π

+

2

θ

)

cot(

4

π

+

2

θ

)

Answered by Syamkumarr
2

Answer:

Proof is below:

Step-by-step explanation:

Given that u = log tan(\frac{\pi}{4} + \frac{x}{2})

Taking e both sides, we get

e^{u} =  tan(\frac{\pi}{4} + \frac{x}{2})

e^{u} = \frac{tan\frac{\pi}{4} + tan\frac{x}{2}}{1 -tan\frac{\pi}{4} tan\frac{x}{2} }

=> e^{u} = \frac{1 + tan\frac{x}{2}}{1 -1* tan\frac{x}{2} }

We need to prove sinh u = tan x

We know that sinh u =  \frac{e^{u}-e^{-u}}{2} =  \frac{e^{2u}-1}{2e^{u}}  

2 e^{u} = 2\left(\frac{1 + tan\frac{x}{2}}{1 -tan\frac{x}{2} }\right)

Calculating  \frac{e^{2u}-1}{2e^{u}}

Substituting the values, we get,

= \frac{\left(\frac{1 + tan\frac{x}{2}}{1 -tan\frac{x}{2} }\right)^2 - 1}{2\left(\frac{1 + tan\frac{x}{2}}{1 -tan\frac{x}{2} }\right)}

Taking LCM

=  \frac{\frac{(1 + tan\frac{x}{2})^2-(1 -tan\frac{x}{2})^2 }{(1 -tan\frac{x}{2})^2 }}{\frac{2(1 + tan\frac{x}{2})}{1 -tan\frac{x}{2} }\right)}

Cancelling the common terms,

=  \frac{\frac{(1 + tan\frac{x}{2})^2-(1 -tan\frac{x}{2})^2}{(1 -tan\frac{x}{2}) }}{2(1 + tan\frac{x}{2})}

Simplifying using (a ± b)² = a² + b² ± 2ab

=  \frac{2(2 tan \frac{x}{2})}{2(1-tan^2\frac{x}{2})}

Cancelling the common terms

=  \frac{2 tan \frac{x}{2}}{1-tan^2\frac{x}{2}}

By double angle formula of tan x

= tan (2*\frac{x}{2})

= tan x

Hence proved.

Similar questions