Math, asked by jigarmehta2604, 9 months ago

Ulculeu.
If the ratio of the compound interest (compounded annually) to the simple interest earned
on a principal at the same rate of interest per annum for 3 years is 331:300, what is the
rate of interest per annum?





with full explanation​

Answers

Answered by Anonymous
11

Let the Principal be Rs. P and same rate be R

Time = 3 years

  • Compound interest = P{ ( 1 + R/100 )^T - 1 }
  • Simple interest = PTR / 100

Ratio of CI and SI = 331 : 300

 \sf \Rightarrow   \dfrac{P  \bigg(\bigg(1 +  \dfrac{R}{100}  \bigg)  ^{T} - 1 \bigg)}{ \dfrac{PTR}{100}} =  \dfrac{331}{300}

 \sf \Rightarrow   \dfrac{ \bigg(1 +  \dfrac{R}{100}  \bigg)  ^{3} - 1 }{ \dfrac{3R}{100}} =  \dfrac{331}{300}

 \sf \Rightarrow    \bigg(1 +  \dfrac{R}{100}  \bigg)  ^{3} - 1 =  \dfrac{331}{300}  \times  \dfrac{3R}{100}

 \sf \Rightarrow    \bigg(1 +  \dfrac{R}{100}  \bigg)  ^{3} - 1 =  \dfrac{331R}{10000}

Since a³ - b³ = (a - b)(a² + b² + ab)

 \sf \Rightarrow    \bigg(1 +  \dfrac{R}{100}   - 1 \bigg) \bigg( \bigg(1 +  \dfrac{R}{100} \bigg) ^{2} + 1 + 1 +  \dfrac{R}{100}  \bigg)  =  \dfrac{331R}{10000}

 \sf \Rightarrow    \dfrac{R}{100}   \bigg( 1+   \bigg(\dfrac{R}{100} \bigg) ^{2}  +  \dfrac{2R}{10} + 1 + 1 +  \dfrac{R}{100}  \bigg)  =  \dfrac{331R}{10000}

 \sf \Rightarrow \bigg(\dfrac{R}{100} \bigg) ^{2}  +  \dfrac{3R}{10} + 3  =  \dfrac{331R}{10000} \times  \dfrac{100}{R}

 \sf \Rightarrow   \dfrac{R^{2} }{10000} + \dfrac{3R}{100}    + 3 =  \dfrac{331}{100}

Multiplying every term with 10000

 \sf \Rightarrow  R^{2} + 300 R + 30000 =  33100

 \sf \Rightarrow  R^{2} + 300 R   -  3100 = 0

 \sf \Rightarrow  R^{2} + 310R   -1 0 R - 3100 = 0

 \sf \Rightarrow  R(R + 310)   -1 0 (R  + 310) = 0

 \sf \Rightarrow  (R + 310)(R  + 10)  = 0

 \sf \Rightarrow  R + 310 = 0 \qquad  OR \qquad  R - 10 = 0

 \sf \Rightarrow  R  =  -  310 \qquad  OR \qquad  R  =  10

Since Rate of interest cannot be negative

 \Rightarrow{  \boxed{ \sf R  =  10 }}

Hence Rate of interest is 10 %

Similar questions