Science, asked by english333, 1 year ago

Uncertainty in position of an electron (mass = 9.1 x
10^-28 gm) moving with a velocity of 3 x 10^4 cm/s
accurate upto 0.001% will be (Use h/4π) in uncertainty
expression where h = 6.626 x 10^-27 erg-s)
(1) 5.76 cm
(2) 7.68 cm
(3) 1.93 cm
(4) 3.84 cm​

Answers

Answered by sonuvuce
60

Answer:

Option (3) 1.93 cm

Explanation:

Mass of the electron = 9.1 × 10^-28 gm = 9.1 × 10^-31 kg

Velocity of the electron = 3 × 10^4 cm/s = 3 × 10^2 m/s

Momentum of the electron

p = mv

or, p=9.1\times 10^{-31}\times 3\times 10^{2} kg-m/s

\implies p=27.3\times 10^{-29} kg-m/s

0.001% of p

= \frac{0.001}{100}\times 27.3\times 10^{-29}

= 27.3\times 10^{-34} kg-m/s

Using the uncertainity principle

x.p=\frac{h}{4\pi}

\implies x=\frac{h}{4p\pi}

\implies x=\frac{6.626\times 10^{-34}}{4\times3.14\times 27.3\times10^{-34}}        (∵ h = 6.626 × 10^-34 Js)

\implies x=0.0193 m

or, x = 1.93 cm

Hope this helps

Answered by techieayushp17
10

Answer:

Explanation:

Mass of the electron = 9.1 × 10^-28 gm = 9.1 × 10^-31 kg

Velocity of the electron = 3 × 10^4 cm/s = 3 × 10^2 m/s

Momentum of the electron

p = mv

or,  kg-m/s

kg-m/s

0.001% of p

=

=  kg-m/s

Using the uncertainity principle

       (∵ h = 6.626 × 10^-34 Js)

m

or, x = 1.93 cm

Hope this helps

Read more on Brainly.in - https://brainly.in/question/11701314#readmore

Similar questions