Math, asked by wwwjpy, 1 year ago

under root 5 minus one upon under root 5 + 1 + under root 5 + 1 upon under root 5 - 1 rationalism it

Answers

Answered by DaIncredible
240
Hey friend,
Here is answer you were looking for:
 \frac{ (\sqrt{5)} - 1 }{ (\sqrt{5}) + 1 }  +  \frac{( \sqrt{5}) + 1 }{( \sqrt{5}) - 1 }  \\  \\  =  \frac{( \sqrt{5} ) - 1}{( \sqrt{5}) + 1 }  \times  \frac{( \sqrt{5}) - 1 }{( \sqrt{5} ) - 1}  + \\  \frac{( \sqrt{5} ) + 1}{( \sqrt{5} ) - 1}  \times  \frac{( \sqrt{5}) + 1 }{( \sqrt{5} ) + 1}  \\  \\  =  \frac{( \sqrt{5})^{2} + (1)^{2}   + 2 \times ( \sqrt{5 )}  \times 1 }{( \sqrt{5} )^{2} - (1)^{2} } \\   +  \frac{( \sqrt{5})^{2}   +  {(1)}^{2}  + 2 \times  ( \sqrt{5})  \times 1  }{( \sqrt{5})^{2}  - (1)^{2}  }  \\  \\  =  \frac{5 + 1 - 2 \sqrt{5} }{5 - 1}  +  \frac{5 + 1 + 2 \sqrt{5} }{5 - 1}  \\  \\  =  \frac{6 - 2 \sqrt{5}  + 6 + 2 \sqrt{5} }{4}  \\  \\  =  \frac{6 + 6}{4}  \\  \\  =  \frac{12}{4}  \\  \\  = 3

Hope this helps!!!

@Mahak24

Thanks...
☺☺

wwwjpy: Thanks for the solution
DaIncredible: my pleasure
DaIncredible: glad you like it :)
Answered by D2468
7

Step-by-step explanation:

hope it helps you in your studies

Attachments:
Similar questions