Unit and Dimention question...Please refer to attachment
DONT SPAM
Answers
Explanation:
5. The measures of two adjacent angles of a parallelogram are in the ratio 3:2. Find the measure of each of the angles of the parallelogram.
\begin{gathered}\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{Given:-}}\\\\\end{gathered}\end{gathered} < /p > < p > \end{gathered}
Given:−
</p><p>
The measures of two adjacent angles of a parallelogram are in the ratio 3:2.
\begin{gathered}\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{To \: Find:-}}\\\\\end{gathered}\end{gathered} < /p > < p > \end{gathered}
ToFind:−
</p><p>
Find the measure of each of the angles of the parallelogram.
\begin{gathered}\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{Solution :- }}\\\\\end{gathered}\end{gathered} < /p > < p > \end{gathered}
Solution:−
</p><p>
\text{ \sf suppose the angles be equal to 3x and 2x} suppose the angles be equal to 3x and 2x
\boxed{ \sf \orange{ we \: have \: ardjacent \: angles \: of \: a \: parallelogram \: = 180}}
wehaveardjacentanglesofaparallelogram=180
\begin{gathered}\begin{gathered}\begin{gathered}\\ \sf \underline{ \green{putting \: all \: values : }}\end{gathered}\end{gathered} \end{gathered}
puttingallvalues:
\begin{gathered}\begin{gathered}\begin{gathered}\: \\ \sf \to \: 3x + 2 x = 180\: \\ \\ \sf \to \: \: \: \: \: \ : \: \: \: \: \:5x = 180 \\ \\ \: \sf \to \: \: \: \: \: \: \: \: \: \: \:x \: = \frac{180}{5} \\ \\ \sf \to \: \: \: \: \: \: \: \: \: \: \:x \: = \cancel{ \frac{180} {5} } \\ \\ \sf \to \: \: \: \: \: \: \: \: \: \: \purple{x = 36}\\\\\end{gathered}\end {gathered} < /p > < p > < /p > < p > < /p > < p > \end{gathered}
→3x+2x=180
→ :5x=180
→x=
5
180
→x=
5
180
→x=36
</p><p></p><p></p><p>
\begin{gathered} < /p > < p > \begin{gathered}\begin{gathered}\sf \to \: 3x \\ \sf \to \: 3 \times 36 \\ \sf \to \red{108 }\\ \\ \\ \sf \to \: 2x \\ \sf \to \: 2 \times 36 \\ \sf \to \orange{72} \\\end{gathered}\end{gathered} \end{gathered}
</p><p>
→3x
→3×36
→108
→2x
→2×36
→72