Social Sciences, asked by zaaranihmath3, 5 months ago

Up and down movement of water forming crest and troughs give one word

Answers

Answered by Legend42
9

Answer:

Given:−

Points A(7,10), B(-2,5) and C(3,-4)

\underline{\bf{ \: To \: Find:-}}

ToFind:−

Given points are the vertices of right angled Triangle.

\underline{\bf{ \: Solution:-}}

Solution:−

Here,

we, know that

\large{\boxed{\sf Distance \: Formula = \sqrt{ {(x_{2} - x_{1})}^{2} + {( y_{2} - y_{1} ) }^{2} } \: }}

DistanceFormula=

(x

2

−x

1

)

2

+(y

2

−y

1

)

2

So,

\begin{gathered} \ast\sf AB = \sqrt{ {(x_{2} - x_{1})}^{2} + {( y_{2} - y_{1} ) }^{2} } \\ \end{gathered}

∗AB=

(x

2

−x

1

)

2

+(y

2

−y

1

)

2

where,

\sf x_1 = 7x

1

=7

\sf x_2 = -2x

2

=−2

\sf y_1 = 10y

1

=10

\sf y_2 = 5y

2

=5

So,

\begin{gathered} \dashrightarrow\sf AB = \sqrt{ {( - 2 -7)}^{2} + {( 5 - 10) }^{2} } \\ \\ \end{gathered}

⇢AB=

(−2−7)

2

+(5−10)

2

\begin{gathered} \dashrightarrow\sf AB = \sqrt{ {( -9)}^{2} + {(- 5) }^{2} } \\ \\ \end{gathered}

⇢AB=

(−9)

2

+(−5)

2

\begin{gathered} \dashrightarrow\sf AB = \sqrt{(81)+ (25)} \\ \\ \end{gathered}

⇢AB=

(81)+(25)

\begin{gathered} \dashrightarrow\sf AB = \sqrt{81+ 25} \\ \\ \end{gathered}

⇢AB=

81+25

\begin{gathered} \dashrightarrow\sf AB = \sqrt{106} \\ \\ \end{gathered}

⇢AB=

106

\begin{gathered}\dashrightarrow\sf {AB}^{2} = 106 \huge{......1}\\ \\ \end{gathered}

⇢AB

2

=106......1

_____________________________

Now,

\begin{gathered}\ast\sf BC = \sqrt{ {(x_{2} - x_{1})}^{2} + {( y_{2} - y_{1} ) }^{2} } \\ \end{gathered}

∗BC=

(x

2

−x

1

)

2

+(y

2

−y

1

)

2

where,

\sf x_1 = -2x

1

=−2

\sf x_2 = 3x

2

=3

\sf y_1 = 5y

1

=5

\sf y_2 = -4y

2

=−4

So,

\begin{gathered}\dashrightarrow\sf BC = \sqrt{ {(3 -( - 2))}^{2} + {( - 4 - 5) }^{2} } \\ \\ \end{gathered}

⇢BC=

(3−(−2))

2

+(−4−5)

2

\begin{gathered}\dashrightarrow\sf BC = \sqrt{ {(3 + 2)}^{2} + {( - 4 - 5) }^{2} } \\ \\ \end{gathered}

⇢BC=

(3+2)

2

+(−4−5)

2

\begin{gathered}\dashrightarrow\sf BC = \sqrt{ {(5)}^{2} + {( -9) }^{2} } \\ \\ \end{gathered}

⇢BC=

(5)

2

+(−9)

2

\begin{gathered}\dashrightarrow\sf BC = \sqrt{25 + 81 } \\ \\ \end{gathered}

⇢BC=

25+81

\begin{gathered}\dashrightarrow\sf BC = \sqrt{106} \\ \\ \end{gathered}

⇢BC=

106

\begin{gathered}\dashrightarrow\sf {BC}^{2} = 106 \huge{.......2} \\ \\ \end{gathered}

⇢BC

2

=106.......2

Answered by nefelibata04
4

Up and down moment of water forming crests and troughs is called wave

hope it help you

Similar questions