Up and down movement of water forming crest and troughs give one word
Answers
Answer:
Given:−
Points A(7,10), B(-2,5) and C(3,-4)
\underline{\bf{ \: To \: Find:-}}
ToFind:−
Given points are the vertices of right angled Triangle.
\underline{\bf{ \: Solution:-}}
Solution:−
Here,
we, know that
\large{\boxed{\sf Distance \: Formula = \sqrt{ {(x_{2} - x_{1})}^{2} + {( y_{2} - y_{1} ) }^{2} } \: }}
DistanceFormula=
(x
2
−x
1
)
2
+(y
2
−y
1
)
2
So,
\begin{gathered} \ast\sf AB = \sqrt{ {(x_{2} - x_{1})}^{2} + {( y_{2} - y_{1} ) }^{2} } \\ \end{gathered}
∗AB=
(x
2
−x
1
)
2
+(y
2
−y
1
)
2
where,
\sf x_1 = 7x
1
=7
\sf x_2 = -2x
2
=−2
\sf y_1 = 10y
1
=10
\sf y_2 = 5y
2
=5
So,
\begin{gathered} \dashrightarrow\sf AB = \sqrt{ {( - 2 -7)}^{2} + {( 5 - 10) }^{2} } \\ \\ \end{gathered}
⇢AB=
(−2−7)
2
+(5−10)
2
\begin{gathered} \dashrightarrow\sf AB = \sqrt{ {( -9)}^{2} + {(- 5) }^{2} } \\ \\ \end{gathered}
⇢AB=
(−9)
2
+(−5)
2
\begin{gathered} \dashrightarrow\sf AB = \sqrt{(81)+ (25)} \\ \\ \end{gathered}
⇢AB=
(81)+(25)
\begin{gathered} \dashrightarrow\sf AB = \sqrt{81+ 25} \\ \\ \end{gathered}
⇢AB=
81+25
\begin{gathered} \dashrightarrow\sf AB = \sqrt{106} \\ \\ \end{gathered}
⇢AB=
106
\begin{gathered}\dashrightarrow\sf {AB}^{2} = 106 \huge{......1}\\ \\ \end{gathered}
⇢AB
2
=106......1
_____________________________
Now,
\begin{gathered}\ast\sf BC = \sqrt{ {(x_{2} - x_{1})}^{2} + {( y_{2} - y_{1} ) }^{2} } \\ \end{gathered}
∗BC=
(x
2
−x
1
)
2
+(y
2
−y
1
)
2
where,
\sf x_1 = -2x
1
=−2
\sf x_2 = 3x
2
=3
\sf y_1 = 5y
1
=5
\sf y_2 = -4y
2
=−4
So,
\begin{gathered}\dashrightarrow\sf BC = \sqrt{ {(3 -( - 2))}^{2} + {( - 4 - 5) }^{2} } \\ \\ \end{gathered}
⇢BC=
(3−(−2))
2
+(−4−5)
2
\begin{gathered}\dashrightarrow\sf BC = \sqrt{ {(3 + 2)}^{2} + {( - 4 - 5) }^{2} } \\ \\ \end{gathered}
⇢BC=
(3+2)
2
+(−4−5)
2
\begin{gathered}\dashrightarrow\sf BC = \sqrt{ {(5)}^{2} + {( -9) }^{2} } \\ \\ \end{gathered}
⇢BC=
(5)
2
+(−9)
2
\begin{gathered}\dashrightarrow\sf BC = \sqrt{25 + 81 } \\ \\ \end{gathered}
⇢BC=
25+81
\begin{gathered}\dashrightarrow\sf BC = \sqrt{106} \\ \\ \end{gathered}
⇢BC=
106
\begin{gathered}\dashrightarrow\sf {BC}^{2} = 106 \huge{.......2} \\ \\ \end{gathered}
⇢BC
2
=106.......2
Up and down moment of water forming crests and troughs is called wave
hope it help you