Math, asked by shamaiqbal42, 9 months ago

us bindu ke nirdeshank gyat kijiye jo binduo (-1,7) aur (4,-3) ko milane wale rekhakhand ko 2:3 ke anupat me vobhajit karta hai.​

Answers

Answered by VishnuPriya2801
73

Question:-

Find the co - ordinates of the point which divides the line segment joining the points ( - 1 , 7) & (4 , - 3) in the ratio 2 : 3.

Answer:-

Let the co - ordinates of the point be (x , y) .

Given:

(x , y) divides the line segment joining the points ( - 1 , 7) & (4 , - 3) in the ratio 2 : 3.

Using section formula ,

i.e., The co - ordinates of the point which divides the line segment joining the points  \sf (x_1 , y_1) and  \sf (x_2 , y_2) in the ratio m : n are given by :

 \sf (x \: , \: y) \:  =  \:  \bigg( \dfrac{mx _{2} + nx _{1}}{m + n}  \:  \: , \:  \:  \dfrac{my _{2} + ny  _{1} }{m + n}  \bigg)

Let,

  • m = 2

  • n = 3

  • x1 = - 1

  • y1 = 7

  • x2 = 4

  • y2 = - 3

Hence,

 \sf \: (x \:,  \: y) =  \bigg( \dfrac{(2)(4) + (3)( - 1)}{2 + 3}  \:  \:,  \:  \:  \dfrac{(2)(-3) + (3)( 7)}{2 + 3} \bigg)

 \sf \implies \: (x \: , \: y) =  \bigg( \dfrac{8 - 3}{5}  \: \:  ,\:   \: \dfrac{-6 +21 }{5}  \bigg)

 \sf \implies \: (x \:  ,\: y) =  \bigg( \dfrac{5}{5}  \:  ,\:  \dfrac{15}{5}  \bigg)

→ (x , y) = (1 , 3)

Therefore, the co - ordinates of the point are (1 , 3).

Answered by llSecreTStarll
51

To Find :

  • we have to find the cordinates of points which divides the line segment in Ratio of 2:3.

Solution :

Let p(x ,y) be the required point.

Using section formula :

\boxed { \red{\underline{\bf\{{\frac{m_1x_2+m_2x_1}{m_1+ m_2},\frac{m_1y_2+m_2y_1}{m_1+ m_2}\}}}}}

  • m1 = 2
  • m2 = 3
  • x1 = -1
  • x2 = 4
  • y1 = 7
  • y2 = -3

 \large\sf{ x =  \{ \frac{2 \times 4 + 3 \times ( - 1)}{2 + 3} \} ,y =   \{ \frac{2 \times ( - 3) + 3 \times 7}{2 + 3}  \}}

\large(\sf{ x =  \frac{8  - 3}{5}  },\sf{ y = \frac{-6 + 21}{5} ) }

\large(\sf{ x =  \frac{5}{5} },\sf{ y =  \frac{15}{5} ) }

\large(\sf{ x =  1 },\sf{ y = 3})

 \large\dag  \large { \red{\underline{\bf{Hence }}}}

 { \green{\textrm{(1,3) are the required point. }}}

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions