Math, asked by aman10166, 7 months ago

Use a suitable identity to get each of the following products.
(i) (x + 3) (x + 3) (i) (2y + 5) (2y + 5)
(iii) (2a - 7) (2a - 7) viii
-
(iv) (3a - 2) (3a - 2 (v) (1.1m - 0.4) (1.1m + 0.4)
(vi) (a? + b2) (- a2 + b2) (vii) (6x - 7) (6x + 7) (viii) (-a + c)(a + c)
3y
(ix)
(x) (7a-9b) (7a - 9b)
4 2 4
х
+
x
+
Зу
2​

Answers

Answered by WanderLust007
19

Answer:

HEY BUD!I HOPE THIS HELPS FOR YOU!

Step-by-step explanation:

An identity is true only for certain values of its variables. An equation is not an identity.

The following are the identities

(a + b)² = a² + 2ab + b²  

(a – b)² = a² – 2ab + b²  

(a – b)(a + b) = a² – b²

Another useful identity is

(x + a) (x + b) = x² + (a + b) x + ab

If the given expression is the difference of two squares we use the formula

a² –b² = (a+b)(a-b)

 

• The above four identities are useful in carrying out squares and products of algebraic expressions. They also allow easy alternative methods to calculate products of numbers and so on.

==========================================================

Solution:

1)

(x + 3) (x + 3)

(x+3)²= (x)²+2×x×3+(3)²

(a + b)² = a² + 2ab + b²  

=x² + 6x + 9

2)

(2y + 5) (2y + 5)

(2y+5)²= (2y)²+2×2y×5+ (5)²

(a + b)² = a² + 2ab + b²  

=4y² + 20y + 25

3)

(2a – 7) (2a – 7)

(2a-7)²=(2a)²-2×2a×7+(7)²

(a – b)² = a² – 2ab + b²  

 = 4a² – 28a + 49

4)

 

(3a-1/2)(3a-1/2)

(3a-1/2)²= (3a)²-2×3a×1/2 + (1/2)²

(a – b)² = a² – 2ab + b²  

=  9a² -3a+(1/4)

5)

(1.1m – 0.4) (1.1m + 0.4)

= (1.1m)² - (0.4)²

(a – b)(a + b) = a² – b²

= 1.21m² – 0.16

6)

(a²+ b²) (– a²+ b²)

= (b²+ a² ) (b² – a²)

= (b²)² - (a²)²

(a – b)(a + b) = a² – b²

= b⁴ - a⁴

7)

(6x – 7) (6x + 7)

(6x)² -(7)²

(a – b)(a + b) = a² – b²

=36x² – 49

8)  (– a + c) (– a + c)

(c-a)(c+a)

= (c)²  -(a)²

(a – b)(a + b) = a² – b²

= c² - a²

 

8)  [ (x/2)+(3y/4)] [ (x/2)+(3y/4)]

[ (x/2)+(3y/4)]²

(x/2)²+2×x/2×3y/4)+(3y/4)²

(a + b)² = a² + 2ab + b²  

=(x²/4) + (9y²/16) +(3xy/4)

9) (7a – 9b) (7a – 9b)

(7a-9b)²=(7a)²- 2×7a×9b +(9b)²

(a - b)² = a² - 2ab + b²  

= 49a² – 126ab + 81b²

=========================================================

Hope this will help you.....

Similar questions