use division algorithm to show that the cube of any positive integer is of the form 9 m,9m+1or 9m + 8
Answers
Step-by-step explanation:
According to the Euclid's division algorithm, a = bq + r (where 0 ≤ r < b)
r here can be 0,1,2,3,4,5,6,7 and 8.
Here, let a be any positive integer, and b = 9
- When r = 0
a = 9m
a³ = (9m)³ ---- (Cubing both sides)
a³ = 729m³
a³ = 9(81m³)
a³ = 9m [where m is 81m³]
___________________________
- When r = 1
a = 9m + 1
a³ = (9m + 1)³ ---- (Cubing both sides)
a³ = (9m)³ + (1)³ + 3(9m)(1)(9m + 1)
a³ = 729m³ + 1 + 27m(9m + 1)
a³ = 729m³ + 1 + 243m² + 27m
a³ = 9(81m³ + 27m² + 3) + 1
a³ = 9m + 1 [where m = (81m³ + 27m² + 3)]
___________________________
- When r = 8
a = 9m + 8
a³ = (9m + 8)³ ---- (Cubing both sides)
a³ = (9m)³ + (8)³ + 3(9m)(8)(9m + 8)
a³ = 729m³ + 512 + 216m(9m + 8)
a³ = 729m³ + 512 + 1944m² + 1728m
a³ = 9(81m³ + 216m² + 192m + 56) + 8
a³ = 9m + 8 [where m = (81m³ + 216m² + 192m + 56)]
Hence, it is proved that cube of any positive integer is of the form 9 m,9m+1or 9m + 8.
Given :-
9m
9m + 1
9m + 8
To Find :-
use division algorithm to show that the cube of any positive integer
Solution :-
Let x be the number
x = 9m
x³ = 9m³
x³ = 729m³
Now
729 can be written as 9(81)
x³ = 9m
2]
9m + 1
Now
r = 1
x³ = (9m + 1)³
Apply identity
(a + b)³ = a³ + b³ + 3ab(a + b)
x³ = (9m)³ + (1)³ + 3 × 9m × 1(9m + 1)
x³ = 729m³ + 1 + 3 × 9m × 1(9m + 1)
x³ = 729m³ + 1 + 27m(9m + 1)
x³ = 729m³ + 1 + 27m + 243m²
x³ = 9(81m³ + 27m² + 3) + 1
x³ = 9(m) + 1
x³ = 9m + 1
3]
x³ = (9m + 8)³
Using same identity
(a + b)³ = a³ + b³ + 3ab(a + b)
x³ = (9m)³ + (8)³ + 3(9m)(8)(9m + 8)
x³ = 729m³ + 512 + 27m(8)(9m + 8)
x³ = 729m³ + 512 + 1944m² + 1728m
x³ = 9(81m³ + 216m² + 192m + 56) + 8
x³ = 9(m) + 8
x³ = 9m + 8
[tex][/tex]